Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_180_a7, author = {A. V. Kuleshov}, title = {Linear frames as orbits of projective frames}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {58--65}, publisher = {mathdoc}, volume = {180}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/} }
TY - JOUR AU - A. V. Kuleshov TI - Linear frames as orbits of projective frames JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 58 EP - 65 VL - 180 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/ LA - ru ID - INTO_2020_180_a7 ER -
A. V. Kuleshov. Linear frames as orbits of projective frames. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 58-65. http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/
[1] Belova O. O., “Svyaznosti v rassloeniyakh, assotsiirovannykh s mnogoobraziem Grassmana i prostranstvom tsentrirovannykh ploskostei”, Fundam. prikl. mat., 14:2 (2008), 29–67 | MR
[2] Berzhe M., Geometriya, Mir, M., 1984 | MR
[3] Efimov N. V., Vysshaya geometriya, Fizmatlit, M., 2004 | MR
[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR
[5] Omelyan O. M., Shevchenko Yu. I., “Reduktsii ob'ekta tsentroproektivnoi svyaznosti i tenzora affinnogo krucheniya na raspredelenii ploskostei”, Mat. zametki., 84:1 (2008), 99–107 | MR | Zbl
[6] Polyakova K. V., “Parallelnye pereneseniya na poverkhnosti proektivnogo prostranstva”, Fundam. prikl. mat., 14:2 (2008), 129–177
[7] Akivis A., Goldberg V., Projective Differential Geometry of Submanifolds, North-Holland, Amsterdam, 1993 | MR | Zbl
[8] Bell P. O., “Generalized theorems of Desargues for $n$-dimensional projective space”, Proc. Am. Math. Soc., 1955, no. 6, 675–681 | MR | Zbl
[9] Cartan E., La théorie de groupes finis et continus et la géométrie différentielle traitées par la méthode di repère mobile, Gauthier-Villars, Paris, 1937 | MR
[10] Conlon L., Differential Manifolds: A First Course, Birkhäuser, Boston, 1993 | MR
[11] Ivey T. A., Landsberg J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Am. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl