Linear frames as orbits of projective frames
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 58-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multidimensional projective space with a marked point (center) is considered. On the manifold of projective frames of the given space that are adapted to the center, the action of the stabilizer of the center of the group of projective transformations is defined. We prove that linear frames, i.e., bases of the tangent vector space of the projective space at its center, can be identified with orbits of the adapted projective frames with respect to the action of the kernel of the epimorphism of Lie groups, which assigns to each transformation from the stabilizer its differential at the center. Using a multidimensional generalization of the Desargues theorem, we obtain a criterion for two adapted projective frames to belong to the same orbit.
Keywords: projective space, projective frame, linear frame, Desargues theorem.
Mots-clés : orbit space
@article{INTO_2020_180_a7,
     author = {A. V. Kuleshov},
     title = {Linear frames as orbits of projective frames},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--65},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/}
}
TY  - JOUR
AU  - A. V. Kuleshov
TI  - Linear frames as orbits of projective frames
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 58
EP  - 65
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/
LA  - ru
ID  - INTO_2020_180_a7
ER  - 
%0 Journal Article
%A A. V. Kuleshov
%T Linear frames as orbits of projective frames
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 58-65
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/
%G ru
%F INTO_2020_180_a7
A. V. Kuleshov. Linear frames as orbits of projective frames. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 58-65. http://geodesic.mathdoc.fr/item/INTO_2020_180_a7/

[1] Belova O. O., “Svyaznosti v rassloeniyakh, assotsiirovannykh s mnogoobraziem Grassmana i prostranstvom tsentrirovannykh ploskostei”, Fundam. prikl. mat., 14:2 (2008), 29–67 | MR

[2] Berzhe M., Geometriya, Mir, M., 1984 | MR

[3] Efimov N. V., Vysshaya geometriya, Fizmatlit, M., 2004 | MR

[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[5] Omelyan O. M., Shevchenko Yu. I., “Reduktsii ob'ekta tsentroproektivnoi svyaznosti i tenzora affinnogo krucheniya na raspredelenii ploskostei”, Mat. zametki., 84:1 (2008), 99–107 | MR | Zbl

[6] Polyakova K. V., “Parallelnye pereneseniya na poverkhnosti proektivnogo prostranstva”, Fundam. prikl. mat., 14:2 (2008), 129–177

[7] Akivis A., Goldberg V., Projective Differential Geometry of Submanifolds, North-Holland, Amsterdam, 1993 | MR | Zbl

[8] Bell P. O., “Generalized theorems of Desargues for $n$-dimensional projective space”, Proc. Am. Math. Soc., 1955, no. 6, 675–681 | MR | Zbl

[9] Cartan E., La théorie de groupes finis et continus et la géométrie différentielle traitées par la méthode di repère mobile, Gauthier-Villars, Paris, 1937 | MR

[10] Conlon L., Differential Manifolds: A First Course, Birkhäuser, Boston, 1993 | MR

[11] Ivey T. A., Landsberg J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Am. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl