Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_179_a8, author = {A. A. Sabykanov and J. Mike\v{s} and P. Pe\v{s}ka}, title = {Symmetric, semisymmetric, and recurrent projectively {Euclidean} spaces}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {60--66}, publisher = {mathdoc}, volume = {179}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a8/} }
TY - JOUR AU - A. A. Sabykanov AU - J. Mikeš AU - P. Peška TI - Symmetric, semisymmetric, and recurrent projectively Euclidean spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 60 EP - 66 VL - 179 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_179_a8/ LA - ru ID - INTO_2020_179_a8 ER -
%0 Journal Article %A A. A. Sabykanov %A J. Mikeš %A P. Peška %T Symmetric, semisymmetric, and recurrent projectively Euclidean spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 60-66 %V 179 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_179_a8/ %G ru %F INTO_2020_179_a8
A. A. Sabykanov; J. Mikeš; P. Peška. Symmetric, semisymmetric, and recurrent projectively Euclidean spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 60-66. http://geodesic.mathdoc.fr/item/INTO_2020_179_a8/
[1] Berezovskii V. E., Guseva N. I., Mikesh I., “O chastnom sluchae pochti geodezicheskikh otobrazhenii pervogo tipa prostranstv affinnoi svyaznosti, pri kotorom sokhranyaetsya nekotoryi tenzor”, Mat. zametki., 98:3 (2015), 463–466 | MR | Zbl
[2] Berezovskii V. E., Kovalev L. E., Mikesh I., “O sokhranenii tenzora Rimana otnositelno nekotorykh otobrazhenii prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 2018, no. 9, 3-–10 | MR | Zbl
[3] Kaigorodov V. R., “Struktura krivizny prostranstva-vremeni”, Itogi nauki i tekhn. Ser. Probl. geom., 14 (1983), 177-–204 | Zbl
[4] Kovalev P. I., “Troinye sistemy Li i prostranstva affinnoi svyaznosti”, Mat. zametki., 14:1 (1973), 107-–112 | Zbl
[5] Lumiste Yu. G., “Polusimmetricheskie podmnogoobraziya”, Itogi nauki i tekhn. Ser. Probl. geom., 23 (1991), 3-–28 | Zbl
[6] Mikesh I., “Geodezicheskie otobrazheniya polusimmetricheskikh prostranstv”, Dep. v VINITI., 1976, no. 3924-76Dep.
[7] Mikesh I., “Geodezicheskie otobrazheniya na polusimmetricheskie prostranstva”, Izv. vuzov. Mat., 1994, no. 2, 37-–43 | MR | Zbl
[8] Mirzoyan V. A., “Klassifikatsiya Ric-poluparallelnykh giperpoverkhnostei v evklidovykh prostranstvakh”, Mat. sb., 191:9 (2000), 65-–80 | MR | Zbl
[9] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[10] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966
[11] Sabykanov A. A., Mikesh I., Peshka P., “O polusimmetricheskikh proektivno evklidovykh prostranstvakh”, Sb. tr. Mezhdunar. molodezhn. shk.-semin. i Mezhdunar. nauch. konf. «Sovremennaya geometriya i ee prilozheniya» (Kazan, 27 noyabrya–3 dekabrya 2017 g.), KFU, Kazan, 2017, 123–125
[12] Sinyukov N. S., “O geodezicheskom otobrazhenii rimanovykh prostranstv na simmetricheskie rimanovy prostranstva”, Dokl. AN SSSR., 98:1 (1954), 21–23 | MR | Zbl
[13] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR
[14] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Itogi nauki i tekhn. Ser. Probl. geom., 13 (1982), 3-–26 | MR | Zbl
[15] Shirokov P. A., “Postoyannye polya vektorov i tenzorov v rimanovykh prostranstvakh”, Izv. Kazansk. fiz.-mat. o-va., 1925, no. 25, 86–114
[16] Shirokov P. A., Izbrannye raboty po geometrii, Izd. Kazansk. un-ta, Kazan, 1966 | MR
[17] Berezovskii V., Hinterleitner I., Mikeš J., “Geodesic mappings of manifolds with affine connection onto the Ricci symmetric manifolds”, Filomat., 32:2 (2018), 379–385 | DOI | MR
[18] Cartan É., “Sur les variété à connexion projective”, Bull. Soc. Math. Fr., 52 (1924), 205–241 | DOI | MR | Zbl
[19] Cartan É., “Sur une classe remarquable d'espaces de Riemann, II”, Bull. Soc. Math. Fr., 55 (1927), 114–134 | DOI | MR
[20] Eisenhart L. P., Non-Riemannian geometry, Princeton Univ. Press, 1926 | MR
[21] Hinterleitner I., Mikeš J., “Geodesic mappings onto Weyl manifolds”, J. Appl. Math., 2:1 (2009), 125–133 | MR
[22] Hinterleiner I., Mikeš J., “Fundamental equations of geodesic mappings and their generalizations”, J. Math. Sci., 174 (2011), 537–554 | DOI | MR
[23] Hinterleitner I., Mikeš J., “Projective equivalence and spaces with equi-affine connection”, J. Math. Sci., 177 (2011), 546–550 | DOI | MR | Zbl
[24] Hinterleitner I., Mikeš J., “Geodesic mappings and Einstein spaces”, Geometric Methods in Physics, Birkhäuser, Basel, 2013, 331–335 | DOI | MR | Zbl
[25] Hinterleiner I., Mikeš J., “Geodesic Mappings of (pseudo-) Riemannian manifolds preserve class of differentiability”, Miskolc. Math. Notes., 14 (2013), 89–96 | DOI | MR
[26] Hinterleitner I., Mikeš J., “Geodesic mappings and differentiability of metrics, affine and projective connections”, Filomat., 29 (2015), 1245–1249 | DOI | MR | Zbl
[27] Hinterleiner I., Mikeš J., “Geodesic mappings onto Riemannian manifolds and differentiability”, Geometry, Integrability and Quantization, v. 18, Bulgar. Acad. Sci., Sofia, 2017, 183–190 | DOI | MR
[28] Lichnerowicz A., “Courbure, nombres de Betti, et espaces symétriques”, Proc. Int. Congr. Math. (Cambridge, Massachusetts, August 30–September 6, 1950), Am. Math. Soc., Providence, Rhode Island, 1952, 216–223 | MR | Zbl
[29] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78 (1996), 311–333 | DOI | MR | Zbl
[30] Mikeš J., Berezovski V. E., Stepanova E., Chudá H., “Geodesic mappings and their generalizations”, J. Math. Sci., 217 (2016), 607–623 | DOI | MR | Zbl
[31] Mikeš J., Chodorová M., “On concircular and torse-forming vector fields on compact manifolds”, Acta Math. Acad. Paedagog. Nyházi., 26 (2010), 329–335 | MR | Zbl
[32] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic mappings and some generalizations, Palacky Univ. Press, Olomouc, 2009 | MR | Zbl
[33] Mikeš J. et al., Differential geometry of special mappings, Palacky Univ. Press, Olomouc, 2015 | MR | Zbl
[34] Najdanović M., Zlatanović M., Hinterleitner I., “Conformal and geodesic mappings of generalized equidistant spaces”, Publ. Inst. Math. Beograd., 98 (112) (2015), 71–84 | DOI | MR | Zbl
[35] Nomizu K., “On hypersurfaces satisfying a certain condition on the curvature tensor”, Tôhoku Math. J., 20 (1968), 46–59 | DOI | MR | Zbl
[36] Ruse H. S., “On simply harmonic spaces”, J. London Math. Soc., 21 (1947), 243–247 | MR | Zbl
[37] Sabykanov A., Mikeš J., Peška P., “Recurrent equiaffine projective-Euclidean spaces”, Filomat., 33:4 (2019) | DOI | MR
[38] Sekigawa K., “On some hypersurfaces satisfying $R(X,Y)\cdot R=0$”, Tensor., 25 (1972), 133–136 | MR | Zbl
[39] Stanković M., Mincić S., Velimirović Lj., Zlatanović M., “On equitorsion geodesic mappings of general affine connection spaces”, Rend. Semin. Mat. Univ. Padova., 124 (2010), 77–90 | DOI | MR | Zbl
[40] Stepanov S., Shandra I., Mikeš J., “Harmonic and projective diffeomorphisms”, J. Math. Sci., 207 (2015), 658–668 | DOI | MR | Zbl
[41] Szabó Z. I., “Structure theorems on Riemannian spaces satisfying $R(X,\,Y)\cdot R=0$. I. The local version”, J. Differ. Geom., 17 (1983), 531–582 | DOI | MR
[42] Szabó Z. I., “Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. II. Global versions”, Geom. Dedic., 19 (1985), 65–108 | DOI | MR | Zbl
[43] Takagi H., “An example of Riemannian manifolds satisfying $R(X,\,Y)\cdot R=0$ but not $\nabla R=0$”, Tôhoku Math. J., 24 (1972), 105–108 | DOI | MR | Zbl
[44] Walker A. G., “On Ruse's spaces of recurrent curvature”, Proc. London Math. Soc., 52 (1950), 36–64 | DOI | MR | Zbl