Geometry of fibered graphs of mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the differential-geometric aspect of constant-rank mappings of smooth manifolds based on the concept of a graph as a smooth submanifold in the space of the direct product of the original manifolds. The nonmaximality of the rank provides the fibered nature of the graph. A Riemannian structure on manifolds enriches the geometry of the graph, which now essentially depends on the induced field of the metric tensor; we characterize relatively affine, projective, and $g$-umbilical mappings. The final part of the paper is devoted to mappings of Euclidean spaces of the types described earlier in terms of V. T. Bazylev's constructive graph.
Keywords: constant-rank mapping of manifolds, graph of a mapping, fibered submanifold, almost product structure, relatively affine mapping, $g$-umbilical mapping.
@article{INTO_2020_179_a7,
     author = {A. A. Rylov},
     title = {Geometry of fibered graphs of mappings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a7/}
}
TY  - JOUR
AU  - A. A. Rylov
TI  - Geometry of fibered graphs of mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 50
EP  - 59
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a7/
LA  - ru
ID  - INTO_2020_179_a7
ER  - 
%0 Journal Article
%A A. A. Rylov
%T Geometry of fibered graphs of mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 50-59
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a7/
%G ru
%F INTO_2020_179_a7
A. A. Rylov. Geometry of fibered graphs of mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 50-59. http://geodesic.mathdoc.fr/item/INTO_2020_179_a7/

[1] Bazylev V. T., “K geometrii differentsiruemykh otobrazhenii evklidovykh prostranstv”, Uch. zap. MPGU im. V. I. Lenina., 1970, no. 374, 41–51

[2] Bazylev V. T., “O chastichnykh otobrazheniyakh evklidovykh prostranstv”, Tr. Mat. in-ta im. A. Razmadze AN GruzSSR., 64 (1980), 19–27 | Zbl

[3] Bolodurin V. S., “O svoistvakh tochechnykh sootvetstvii mezhdu tremya mnogomernymi poverkhnostyami proektivnykh prostranstv”, Izv. vuzov. Mat., 2013, no. 9, 3–15 | MR | Zbl

[4] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975

[5] Gracheva V. I., “O geometrii tochechnogo sootvetstviya evklidovykh prostranstv pri ispolzovanii grafika differentsiruemogo otobrazheniya”, Matematicheskii vestnik pedagogicheskikh vuzov i universitetov Volgo-Vyatskogo regiona, Raduga-PRESS, Kirov, 2012, 90–97

[6] Dragnev M. V., Pavlyuchenko Yu. V., Ryzhkov V. V., Izbrannye glavy differentsialnoi geometrii tochechnykh otobrazhenii, RUDN, M., 1994

[7] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Probl. geom., 9 (1979), 3–247

[8] Kaznina O. V., “O grafike nekotorogo otobrazheniya v konstruktsii Fubini—Chekha”, Matematika v obrazovanii, Cheboksary, 2011, 176–180

[9] Kaznina O. V., “Tipy otobrazheniya v konstruktsii Fubini—Chekha”, Matematicheskii vestnik pedagogicheskikh vuzov i universitetov Volgo-Vyatskogo regiona, Raduga-PRESS, Kirov, 2013, 86–91

[10] Karmanova M. B., “Poverkhnosti-grafiki nad trekhmernymi prostranstvami Karno—Karateodori”, Dokl. RAN, 463:3 (2015), 265–268 | MR

[11] Karmanova M. B., “Maksimalnye poverkhnosti-grafiki na 4-mernykh 2-stupenchatykh sublorentsevykh strukturakh”, Sib. mat. zh., 57:2 (2016), 350–362 | MR

[12] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[13] Laptev G. F., “K invariantnoi analiticheskoi teorii differentsiruemykh otobrazhenii”, Tr. geom. semin. VINITI, 6 (1974), 37–42 | Zbl

[14] Matieva G., Geometriya chastichnykh otobrazhenii, setei i raspredelenii evklidova prostranstva, Osh, 2003

[15] Matieva G., Tashpulatov A. B., “Dvoinye linii vyrozhdennogo chastichnogo otobrazheniya evklidova prostranstva, porozhdaemogo zadannoi tsiklicheskoi setyu Frene”, Vestn. Kyrgyz.-Ross. slavyansk. un-ta., 10:9 (2010), 20–23

[16] Matieva G., Mustapakulova Ch. A., Papieva T. M., “O dvoinykh liniyakh odnogo vyrozhdennogo chastichnogo otobrazheniya evklidova prostranstva”, Perspektivy razvitiya fundamentalnykh nauk, ed. Vaitulevich E. A., Tomsk, 2014, 633–635

[17] Matieva G., Abdullaeva Ch. Kh., Kurbanbaeva N. N., “O kvazidvoinykh liniyakh odnogo chastichnogo otobrazheniya, porozhdaemogo zadannym semeistvom gladkikh linii”, Ceteric Paribus., 2016, no. 4, 6–13

[18] Matieva G., Abdullaeva Ch. Kh., Papieva T. M., “O nepodvizhnykh pryamykh odnogo chastichnogo otobrazheniya evklidova prostranstva $E_{5}$”, Nauka, novye tekhnologii i innovatsii Kyrgyzstana, Bishkek, 2017, 148–151

[19] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu prostranstvami”, Itogi nauki. Algebra. Topologiya. Geometriya, In-t nauchn. i tekhn. inform. AN SSSR, M., 1970, 153–174

[20] Rylov A. A., “K geometrii otobrazheniya rimanovykh mnogoobrazii ponizhennogo ranga”, Differ. geom. mnogoobr. figur., 21 (1990), 90–93 | Zbl

[21] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1970

[22] Stepanov S. E., “O geometrii proektivnykh submersii rimanovykh mnogoobrazii”, Izv. vuzov. Mat., 1999, no. 9, 48–54

[23] Abe N., Hasegawa K., “An affine submersion with horizontal distribution and its applications”, Differ. Geom. Appl., 14:3 (2001), 235–250 | DOI | MR | Zbl

[24] Chen B. Y., Geometry of Submanifolds, Marcel Dekker, New York, 1973 | MR | Zbl

[25] Chiang Y. J., “$f$-Biharmonic maps between Riemannian manifolds”, J. Geom. Symmetry Phys., 27 (2012), 45–58 | MR | Zbl

[26] Craveiro de Carvalho F. J., Robertson S. A., “Graphs and their parallel groups”, Rend. Circ. Mat. Palermo. Ser. 2., 48:1 (1999), 65–70 | DOI | MR | Zbl

[27] Mikeš J. et al., Differential Geometry of Special Mappings, Palacky Univ., Olomouc, 2015 | MR | Zbl

[28] Dillen F., Verbouwe G., Vrancken L., “Cubic form geometry for immersions in centro-affine and graph hypersurfaces”, Res. Math., 43:1–2 (2003), 88–95 | DOI | MR | Zbl

[29] Eells J., “Minimal graphs”, Manuscr. Maths, 28:1–3 (1979), 101–108 | DOI | MR | Zbl

[30] Falcitelli M., Ianus S., Pastore A. M., Riemannian Submersions and Related Topics, World Scientific, Singapore, 2004 | MR | Zbl

[31] Garcia-Rio E., Kupeli D. N., Semi-Riemannian Maps and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[32] Lee K. W., Lee Y. I., “Mean curvature flow of the graphs of maps between compact manifolds”, Trans. Am. Math. Soc., 363:11 (2011), 5745–5759 | DOI | MR | Zbl

[33] Lu W. J., “On $f$-bi-harmonic maps and bi-$f$-harmonic maps between Riemannian manifolds”, Sci. China Math., 58:7 (2015), 1483–1498 | DOI | MR | Zbl

[34] Nakauchi N., Urakawa H., Gudmundsson S., “Biharmonic maps into a Riemannian manifold of non-positive curvature”, Geom. Dedic., 169 (2014), 263–272 | DOI | MR | Zbl

[35] Nore T., “Second fundamental form of a map”, Ann. Mat. Pura Appl., 4:146 (1987), 281–310 | MR | Zbl

[36] Ou Y. L. Lu S., “Biharmonic maps in two dimensions”, Ann. Mat. Pura Appl., 192:1 (2013), 127–144 | DOI | MR | Zbl

[37] Ou Y. L., “$f$-Harmonic morphisms between Riemannian manifolds”, Chin. Ann. Math. D., 35:2 (2014), 225–236 | DOI | MR | Zbl

[38] Pipoli G., “Mean curvature flow and Riemannian submersion”, Geom. Dedic., 184:1 (2016), 67–81 | DOI | MR | Zbl

[39] Savas-Halilaj A., Smoczyk K., “Homotopy of area decreasing maps by mean curvature flow”, Adv. Math., 255 (2014), 455–473 | DOI | MR | Zbl

[40] Stepanov S. E., “On the global theory of some classes of mappings”, Ann. Glob. Anal. Geom., 13:3 (1995), 239–249 | DOI | MR | Zbl

[41] Stepanov S., Tsyganok I., “Vanishing theorems for harmonic mappings into non-negatively curved manifolds and their applications”, Manuscr. Math., 154:1–2 (2017), 79–90 | DOI | MR | Zbl

[42] Toth G., Harmonic and Minimal Maps, Ellis Horwood, 1984 | MR | Zbl

[43] Urakawa H., “The geometry of biharmonic maps”, Proc. Int. Conf. “Harmonic Maps and Differential Geometry” (Cagiary, Sept. 7–10, 2009), Am. Math. Soc., Providence, Rhode Island, 2011, 159–175 | MR | Zbl

[44] Urakawa H., “Biharmonic maps into symmetric spaces and integrable systems”, Hokkaido Math. J., 43:1 (2014), 105–136 | DOI | MR | Zbl

[45] Vilms J., “Totally geodesic maps”, J. Differ. Geom., 4:1 (1970), 73–79 | DOI | MR | Zbl

[46] Wan T. Y. H., “Stability of minimal graphs in product of surfaces”, Proc. Pacific Rim. Geom. Conf. “Geometry from the Pacific Rim” (Singapore, December 12–17, 1994), de Gruyter, Berlin–New York, 1997, 395–401 | MR | Zbl

[47] Yano K., Ishihara S., “Harmonic and relatively affine mappings”, J. Differ. Geom., 10 (1975), 501–509 | DOI | MR | Zbl