Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_179_a6, author = {V. Yu. Rovenskiǐ}, title = {Problems of extrinsic geometry of foliations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {41--49}, publisher = {mathdoc}, volume = {179}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/} }
TY - JOUR AU - V. Yu. Rovenskiǐ TI - Problems of extrinsic geometry of foliations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 41 EP - 49 VL - 179 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/ LA - ru ID - INTO_2020_179_a6 ER -
V. Yu. Rovenskiǐ. Problems of extrinsic geometry of foliations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/
[1] Aldrovandi R., Pereira J. G., Teleparallel Gravity. An Iintroduction, Springer, Dordrecht, 2013 | MR
[2] Aubin T., Some Nonlinear Problems in Riemannian Geometry, Springer, 1998 | MR | Zbl
[3] Barletta E., Dragomir S., Rovenski V., Soret M., “Mixed gravitational field equations on globally hyperbolic spacetimes”, Class. Quant. Gravity., 30:8 (2013), 085015 | DOI | MR | Zbl
[4] Bernal A. N., Sánchez M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, Commun. Math. Phys., 257 (2005), 43–50 | DOI | MR | Zbl
[5] Blair D., Riemannian Geometry of Contact and Symplectic Manifolds, Springer, 2010 | MR
[6] Candel A., Conlon L., Foliations, Am. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl
[7] Kazdan J. L., Warner F. W., “Curvature functions for compact $2$-manifolds”, Ann. Math., 99 (1974), 14–47 | DOI | MR | Zbl
[8] Lużyńczyk M., Walczak P., “New integral formulae for two complementary orthogonal distributions on Riemannian manifolds”, Ann. Glob. Anal. Geom., 48 (2015), 195–209 | DOI | MR
[9] Rovenski V., Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Basel, 1998 | MR | Zbl
[10] Rovenski V., “Integral formulae for a Riemannian manifold with two orthogonal distributions”, Centr. Eur. J. Math., 9:3 (2011), 558–577 | DOI | MR | Zbl
[11] Rovenski V., “On solutions to equations with partial Ricci curvature”, J. Geom. Phys., 86 (2014), 370–382 | DOI | MR | Zbl
[12] Rovenski V., “Einstein–Hilbert-type action on spacetimes”, Publ. Inst. Math., 103 (117) (2018), 199–210 | DOI | MR
[13] Rovenski V., “Integral formulas for a metric-affine manifold with two complementary orthogonal distributions”, Global J. Adv. Res. Class. Modern Geom., 6:1 (2017), 7–19 | MR
[14] Rovenski V., Walczak P., “Integral formulae on foliated symmetric spaces”, Math. Ann., 352:1 (2012), 223–237 | DOI | MR | Zbl
[15] Rovenski V., Walczak P., Topics in Extrinsic Geometry of Codimension-One Foliations, Springer, 2011 | MR | Zbl
[16] Rovenski V., Zawadzki T., “The Einstein–Hilbert type action on pseudo-Riemannian almost product manifolds”, J. Math. Phys. Anal. Geom., 15:1 (2019), 86–121 | MR | Zbl
[17] Rovenski V., Zawadzki T., “Variations of the total mixed scalar curvature of a distribution”, Ann. Glob. Anal. Geom., 54 (2018), 87–122 | DOI | MR | Zbl
[18] Rovenski V., Zelenko L., “The mixed Yamabe problem for harmonic foliations”, Eur. J. Math., 1 (2015), 503–533 | DOI | MR | Zbl
[19] Rovenski V., Zelenko L., “Prescribing mixed scalar curvature of foliated Riemann-Cartan spaces”, J. Geom. Phys., 126 (2018), 42–67 | DOI | MR | Zbl
[20] Stepanov S., Mikeš J., “Liouvile-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds”, Differ. Geom. Appl., 54 (2017), 111–121 | DOI | MR | Zbl
[21] Walczak P., “An integral formula for a Riemannian manifold with two orthogonal complementary distributions”, Colloq. Math., 58 (1990), 243–252 | DOI | MR | Zbl