Problems of extrinsic geometry of foliations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey is devoted to particular problems of extrinsic geometry of foliations, which, roughly speaking, describes how leaves (or single submanifolds) are located within the ambient pseudo-Riemannian space. We discuss the following topics with the mixed scalar curvature: integral formulas and splitting of foliations, prescribing the mixed curvature of foliations, and variations of functionals defined on foliations, which seem to be central in extrinsic geometry.
Keywords: extrinsic geometry, pseudo-Riemannian metric, affine connection, mixed scalar curvature, integral formula
Mots-clés : foliation, variation.
@article{INTO_2020_179_a6,
     author = {V. Yu. Rovenskiǐ},
     title = {Problems of extrinsic geometry of foliations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/}
}
TY  - JOUR
AU  - V. Yu. Rovenskiǐ
TI  - Problems of extrinsic geometry of foliations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 41
EP  - 49
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/
LA  - ru
ID  - INTO_2020_179_a6
ER  - 
%0 Journal Article
%A V. Yu. Rovenskiǐ
%T Problems of extrinsic geometry of foliations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 41-49
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/
%G ru
%F INTO_2020_179_a6
V. Yu. Rovenskiǐ. Problems of extrinsic geometry of foliations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/

[1] Aldrovandi R., Pereira J. G., Teleparallel Gravity. An Iintroduction, Springer, Dordrecht, 2013 | MR

[2] Aubin T., Some Nonlinear Problems in Riemannian Geometry, Springer, 1998 | MR | Zbl

[3] Barletta E., Dragomir S., Rovenski V., Soret M., “Mixed gravitational field equations on globally hyperbolic spacetimes”, Class. Quant. Gravity., 30:8 (2013), 085015 | DOI | MR | Zbl

[4] Bernal A. N., Sánchez M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, Commun. Math. Phys., 257 (2005), 43–50 | DOI | MR | Zbl

[5] Blair D., Riemannian Geometry of Contact and Symplectic Manifolds, Springer, 2010 | MR

[6] Candel A., Conlon L., Foliations, Am. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl

[7] Kazdan J. L., Warner F. W., “Curvature functions for compact $2$-manifolds”, Ann. Math., 99 (1974), 14–47 | DOI | MR | Zbl

[8] Lużyńczyk M., Walczak P., “New integral formulae for two complementary orthogonal distributions on Riemannian manifolds”, Ann. Glob. Anal. Geom., 48 (2015), 195–209 | DOI | MR

[9] Rovenski V., Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Basel, 1998 | MR | Zbl

[10] Rovenski V., “Integral formulae for a Riemannian manifold with two orthogonal distributions”, Centr. Eur. J. Math., 9:3 (2011), 558–577 | DOI | MR | Zbl

[11] Rovenski V., “On solutions to equations with partial Ricci curvature”, J. Geom. Phys., 86 (2014), 370–382 | DOI | MR | Zbl

[12] Rovenski V., “Einstein–Hilbert-type action on spacetimes”, Publ. Inst. Math., 103 (117) (2018), 199–210 | DOI | MR

[13] Rovenski V., “Integral formulas for a metric-affine manifold with two complementary orthogonal distributions”, Global J. Adv. Res. Class. Modern Geom., 6:1 (2017), 7–19 | MR

[14] Rovenski V., Walczak P., “Integral formulae on foliated symmetric spaces”, Math. Ann., 352:1 (2012), 223–237 | DOI | MR | Zbl

[15] Rovenski V., Walczak P., Topics in Extrinsic Geometry of Codimension-One Foliations, Springer, 2011 | MR | Zbl

[16] Rovenski V., Zawadzki T., “The Einstein–Hilbert type action on pseudo-Riemannian almost product manifolds”, J. Math. Phys. Anal. Geom., 15:1 (2019), 86–121 | MR | Zbl

[17] Rovenski V., Zawadzki T., “Variations of the total mixed scalar curvature of a distribution”, Ann. Glob. Anal. Geom., 54 (2018), 87–122 | DOI | MR | Zbl

[18] Rovenski V., Zelenko L., “The mixed Yamabe problem for harmonic foliations”, Eur. J. Math., 1 (2015), 503–533 | DOI | MR | Zbl

[19] Rovenski V., Zelenko L., “Prescribing mixed scalar curvature of foliated Riemann-Cartan spaces”, J. Geom. Phys., 126 (2018), 42–67 | DOI | MR | Zbl

[20] Stepanov S., Mikeš J., “Liouvile-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds”, Differ. Geom. Appl., 54 (2017), 111–121 | DOI | MR | Zbl

[21] Walczak P., “An integral formula for a Riemannian manifold with two orthogonal complementary distributions”, Colloq. Math., 58 (1990), 243–252 | DOI | MR | Zbl