Problems of extrinsic geometry of foliations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 41-49
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This survey is devoted to particular problems of extrinsic geometry of foliations, which, roughly speaking, describes how leaves (or single submanifolds) are located within the ambient pseudo-Riemannian space. We discuss the following topics with the mixed scalar curvature: integral formulas and splitting of foliations, prescribing the mixed curvature of foliations, and variations of functionals defined on foliations, which seem to be central in extrinsic geometry.
Keywords: extrinsic geometry, pseudo-Riemannian metric, affine connection, mixed scalar curvature, integral formula
Mots-clés : foliation, variation.
@article{INTO_2020_179_a6,
     author = {V. Yu. Rovenskiǐ},
     title = {Problems of extrinsic geometry of foliations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--49},
     year = {2020},
     volume = {179},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/}
}
TY  - JOUR
AU  - V. Yu. Rovenskiǐ
TI  - Problems of extrinsic geometry of foliations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 41
EP  - 49
VL  - 179
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/
LA  - ru
ID  - INTO_2020_179_a6
ER  - 
%0 Journal Article
%A V. Yu. Rovenskiǐ
%T Problems of extrinsic geometry of foliations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 41-49
%V 179
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/
%G ru
%F INTO_2020_179_a6
V. Yu. Rovenskiǐ. Problems of extrinsic geometry of foliations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2020_179_a6/

[1] Aldrovandi R., Pereira J. G., Teleparallel Gravity. An Iintroduction, Springer, Dordrecht, 2013 | MR

[2] Aubin T., Some Nonlinear Problems in Riemannian Geometry, Springer, 1998 | MR | Zbl

[3] Barletta E., Dragomir S., Rovenski V., Soret M., “Mixed gravitational field equations on globally hyperbolic spacetimes”, Class. Quant. Gravity., 30:8 (2013), 085015 | DOI | MR | Zbl

[4] Bernal A. N., Sánchez M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, Commun. Math. Phys., 257 (2005), 43–50 | DOI | MR | Zbl

[5] Blair D., Riemannian Geometry of Contact and Symplectic Manifolds, Springer, 2010 | MR

[6] Candel A., Conlon L., Foliations, Am. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl

[7] Kazdan J. L., Warner F. W., “Curvature functions for compact $2$-manifolds”, Ann. Math., 99 (1974), 14–47 | DOI | MR | Zbl

[8] Lużyńczyk M., Walczak P., “New integral formulae for two complementary orthogonal distributions on Riemannian manifolds”, Ann. Glob. Anal. Geom., 48 (2015), 195–209 | DOI | MR

[9] Rovenski V., Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Basel, 1998 | MR | Zbl

[10] Rovenski V., “Integral formulae for a Riemannian manifold with two orthogonal distributions”, Centr. Eur. J. Math., 9:3 (2011), 558–577 | DOI | MR | Zbl

[11] Rovenski V., “On solutions to equations with partial Ricci curvature”, J. Geom. Phys., 86 (2014), 370–382 | DOI | MR | Zbl

[12] Rovenski V., “Einstein–Hilbert-type action on spacetimes”, Publ. Inst. Math., 103 (117) (2018), 199–210 | DOI | MR

[13] Rovenski V., “Integral formulas for a metric-affine manifold with two complementary orthogonal distributions”, Global J. Adv. Res. Class. Modern Geom., 6:1 (2017), 7–19 | MR

[14] Rovenski V., Walczak P., “Integral formulae on foliated symmetric spaces”, Math. Ann., 352:1 (2012), 223–237 | DOI | MR | Zbl

[15] Rovenski V., Walczak P., Topics in Extrinsic Geometry of Codimension-One Foliations, Springer, 2011 | MR | Zbl

[16] Rovenski V., Zawadzki T., “The Einstein–Hilbert type action on pseudo-Riemannian almost product manifolds”, J. Math. Phys. Anal. Geom., 15:1 (2019), 86–121 | MR | Zbl

[17] Rovenski V., Zawadzki T., “Variations of the total mixed scalar curvature of a distribution”, Ann. Glob. Anal. Geom., 54 (2018), 87–122 | DOI | MR | Zbl

[18] Rovenski V., Zelenko L., “The mixed Yamabe problem for harmonic foliations”, Eur. J. Math., 1 (2015), 503–533 | DOI | MR | Zbl

[19] Rovenski V., Zelenko L., “Prescribing mixed scalar curvature of foliated Riemann-Cartan spaces”, J. Geom. Phys., 126 (2018), 42–67 | DOI | MR | Zbl

[20] Stepanov S., Mikeš J., “Liouvile-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds”, Differ. Geom. Appl., 54 (2017), 111–121 | DOI | MR | Zbl

[21] Walczak P., “An integral formula for a Riemannian manifold with two orthogonal complementary distributions”, Colloq. Math., 58 (1990), 243–252 | DOI | MR | Zbl