Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 135-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain conditions, impulses, delays, and nonlocal conditions are known to be negligible in comparison with the duration of the process. From the practical (engineering) point of view, delays and nonlocal conditions are intrinsic phenomena of a system that do not violate certain properties of it, such as the controllability. In other words, as a rule, the controllability is robust under the influence of impulses, delays and nonlocal conditions. In this paper, we apply Rothe's fixed-point theorem to prove the interior approximate controllability of the semilinear heat equation with impulses, delays and nonlocal conditions. Also we obtain conditions under which the system considered is approximately controllable.
Keywords: interior approximate controllability, semilinear heat equation, impulse, delay
Mots-clés : nonlocal condition.
@article{INTO_2020_178_a9,
     author = {H. Leiva},
     title = {Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {135--149},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/}
}
TY  - JOUR
AU  - H. Leiva
TI  - Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 135
EP  - 149
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/
LA  - ru
ID  - INTO_2020_178_a9
ER  - 
%0 Journal Article
%A H. Leiva
%T Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 135-149
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/
%G ru
%F INTO_2020_178_a9
H. Leiva. Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 135-149. http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/

[1] Akhiezer N. I. Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR

[2] Abada N., Benchohra M., Hammouche H., “Existence results for semilinear differential evolution equations with impulses and delay”, Cubo., 12:2 (2010)), 1–17 | DOI | MR | Zbl

[3] Akca H., Boucherif A., Covachev V., “Impulsive functional-differential equations with nonlocal conditions”, Int. J. Math. Math. Sci., 29:5 (2002), 251–256 | DOI | MR | Zbl

[4] Bashirov A. E., Ghahramanlou N., “On partial approximate controllability of semilinear systems”, Cogent Eng., 1:1 (2014), 965947 | DOI | MR

[5] Bashirov A. E., Ghahramanlou N., “On partial S-controllability of semilinear partially observable systems”, Int. J. Control., 2014, 986763 | MR

[6] Bashirov A. E., Jneid M., “On partial complete controllability of semilinear systems”, Abstr. Appl. Anal., 2013, 521052 | MR | Zbl

[7] Bashirov A. E., Mahmudov N., Semi N., Etikan H., “On partial controllability concepts”, Int. J. Control,, 80:1 (2007), 1–7 | DOI | MR | Zbl

[8] Bashirov A. E., Kerimov K. R., “On controllability conception for stochastic systems”, SIAM J. Control and Optim., 35 (1997), 384–398 | DOI | MR | Zbl

[9] Bashirov A. E., Mahmudov N. I., “On controllability of deterministic and stochastic systems”, SIAM J. Control Optim., 37 (1999), 1808–1821 | DOI | MR | Zbl

[10] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980 | MR | Zbl

[11] Barcenas D., Leiva H., Sivoli Z., “A broad class of evolution equations are approximately Controllable, but never exactly controllable”, IMA J. Math. Control Inform., 22:3 (2005), 310–320 | DOI | MR | Zbl

[12] Brezis H., Analisis Funcional. Teoria y Applicaciones, Madrid, 1984

[13] Carrasco A., Leiva H., Sanchez J. L., Tineo A., “Approximate controllability of the semilinear impulsive beam equation with impulses”, Trans. IoT Cloud Comput., 2:3 (2014), 70–88 | MR

[14] Chalishajar D. N., “Controllability of impulsive partial neutral funcional differential equation with infinite delay”, Int. J. Math. Anal., 5:8 (2011), 369–380 | MR | Zbl

[15] Chen Lizhen, Li Gang, “Approximate controllability of impulsive differential equations with nonlocal conditions”, Int. J. Nonlin. Sci., 10:4 (2010), 438–446 | MR | Zbl

[16] Curtain R. F., Pritchard A. J., Infinite Dimensional Linear Systems, Springer-Verlag, Berlin, 1978 | MR | Zbl

[17] Curtain R. F., Zwart H. J., An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995 | MR | Zbl

[18] Goldstein H. J., Semigroups of Linear Operators and Applications, Oxford Univ. Press, 1985 | MR | Zbl

[19] Hernández E., Pierri M., Goncalves G., “Existence results for an impulsive abstract partial differential equation with state-deprendent delay”, Int. J. Comput. Math. Appl., 52 (2006), 411–420 | DOI | MR | Zbl

[20] Isac G., “On Rothe's fixed point theorem in general topological vector spaces”, An. St. Univ. Ovidius Const., 12:2 (2004), 127–134 | MR | Zbl

[21] Shikharchand R., Baburao Dhakne M., “On mild solutions of nonlocal semilinear impulsive functional integro-differential equations”, Appl. Math. E-Notes., 13 (2013), 109–119 | MR | Zbl

[22] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989 | MR | Zbl

[23] Leiva H., Merentes N., Sanchez J. L., “Approximate controllability of semilinear reaction diffusion equation”, Math. Control Rel. Field., 2:2 (2012) | MR

[24] Leiva H., Merentes N., Sanchez J. L., “A characterization of semilinear dense range operators and applications”, Abstr. Appl. Anal., 2013 (2013), 729093 | DOI | MR | Zbl

[25] Leiva H., Merentes N., Sanchez J. L., “Interior controllability of the Benjamin–Bona–Mahony Equation”, J. Math. Appl., 2010, no. 33, 51–59 | MR | Zbl

[26] Leiva H., Merentes N., Sanchez J. L., “Interior controllability of the semilinear Benjamin–Bona–Mahony equation”, J. Math. Appl., 2012, no. 35, 97–109 | MR

[27] Leiva H., Merentes N., Sanchez J. L., “Approximate controllability of a semilinear heat equation”, Int. J. Partial Differ. Equations, 2013 (2013), 424309 | DOI | MR | Zbl

[28] Leiva H., “Rothe's fixed point theorem and controllability of semilinear nonautonomous systems”, Syst. Control Lett., 67 (2014), 14–18 | DOI | MR | Zbl

[29] Leiva H., “Controllability of semilinear impulsive nonautonomous systems”, Int. J. Control., 2014, 966759 | MR

[30] Leiva H., Merentes N., “Approximate controllability of the impulsive semilinear heat equation”, J. Math. Appl., 2015, no. 38, 85–104 | MR | Zbl

[31] Leiva H., “Approximate controllability of semilinear impulsive evolution equations”, Abstr. Appl. Anal., 2015 (2015), 797439 | DOI | MR | Zbl

[32] Liang Jin, Liu J. H., Xiao Ti-Jun,, “Nonlocal impulsive problems for nonlinear differential equations in Banach spaces”, Math. Comput. Model., 49 (2009), 798–804 | DOI | MR | Zbl

[33] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983 | MR | Zbl

[34] Protter M. H., “Unique continuation for elliptic equations”, Trans. Am. Math. Soc., 95:1 (1960), 81–91 | DOI | MR | Zbl

[35] Radhakrishnan B., Blachandran K., Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions, 10 (2012), 1 | MR | Zbl

[36] Selvi S., Mallika Arjunan M., “Controllability results for impulsive differential systems with finite delay”, J. Nonlin. Sci. Appl., 5 (2012), 206–219 | DOI | MR | Zbl

[37] Smart J. D. R., Fixed Point Theorems, Cambridge Univ. Press, 1974 | MR | Zbl

[38] Samoilenko A. M., Perestyuk N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995 | MR | Zbl