Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a9, author = {H. Leiva}, title = {Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {135--149}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/} }
TY - JOUR AU - H. Leiva TI - Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 135 EP - 149 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/ LA - ru ID - INTO_2020_178_a9 ER -
%0 Journal Article %A H. Leiva %T Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 135-149 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/ %G ru %F INTO_2020_178_a9
H. Leiva. Rothe's fixed point theorem and the approximate controllability of semilinear heat equation with impulses, delays, and nonlocal conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 135-149. http://geodesic.mathdoc.fr/item/INTO_2020_178_a9/
[1] Akhiezer N. I. Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR
[2] Abada N., Benchohra M., Hammouche H., “Existence results for semilinear differential evolution equations with impulses and delay”, Cubo., 12:2 (2010)), 1–17 | DOI | MR | Zbl
[3] Akca H., Boucherif A., Covachev V., “Impulsive functional-differential equations with nonlocal conditions”, Int. J. Math. Math. Sci., 29:5 (2002), 251–256 | DOI | MR | Zbl
[4] Bashirov A. E., Ghahramanlou N., “On partial approximate controllability of semilinear systems”, Cogent Eng., 1:1 (2014), 965947 | DOI | MR
[5] Bashirov A. E., Ghahramanlou N., “On partial S-controllability of semilinear partially observable systems”, Int. J. Control., 2014, 986763 | MR
[6] Bashirov A. E., Jneid M., “On partial complete controllability of semilinear systems”, Abstr. Appl. Anal., 2013, 521052 | MR | Zbl
[7] Bashirov A. E., Mahmudov N., Semi N., Etikan H., “On partial controllability concepts”, Int. J. Control,, 80:1 (2007), 1–7 | DOI | MR | Zbl
[8] Bashirov A. E., Kerimov K. R., “On controllability conception for stochastic systems”, SIAM J. Control and Optim., 35 (1997), 384–398 | DOI | MR | Zbl
[9] Bashirov A. E., Mahmudov N. I., “On controllability of deterministic and stochastic systems”, SIAM J. Control Optim., 37 (1999), 1808–1821 | DOI | MR | Zbl
[10] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980 | MR | Zbl
[11] Barcenas D., Leiva H., Sivoli Z., “A broad class of evolution equations are approximately Controllable, but never exactly controllable”, IMA J. Math. Control Inform., 22:3 (2005), 310–320 | DOI | MR | Zbl
[12] Brezis H., Analisis Funcional. Teoria y Applicaciones, Madrid, 1984
[13] Carrasco A., Leiva H., Sanchez J. L., Tineo A., “Approximate controllability of the semilinear impulsive beam equation with impulses”, Trans. IoT Cloud Comput., 2:3 (2014), 70–88 | MR
[14] Chalishajar D. N., “Controllability of impulsive partial neutral funcional differential equation with infinite delay”, Int. J. Math. Anal., 5:8 (2011), 369–380 | MR | Zbl
[15] Chen Lizhen, Li Gang, “Approximate controllability of impulsive differential equations with nonlocal conditions”, Int. J. Nonlin. Sci., 10:4 (2010), 438–446 | MR | Zbl
[16] Curtain R. F., Pritchard A. J., Infinite Dimensional Linear Systems, Springer-Verlag, Berlin, 1978 | MR | Zbl
[17] Curtain R. F., Zwart H. J., An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995 | MR | Zbl
[18] Goldstein H. J., Semigroups of Linear Operators and Applications, Oxford Univ. Press, 1985 | MR | Zbl
[19] Hernández E., Pierri M., Goncalves G., “Existence results for an impulsive abstract partial differential equation with state-deprendent delay”, Int. J. Comput. Math. Appl., 52 (2006), 411–420 | DOI | MR | Zbl
[20] Isac G., “On Rothe's fixed point theorem in general topological vector spaces”, An. St. Univ. Ovidius Const., 12:2 (2004), 127–134 | MR | Zbl
[21] Shikharchand R., Baburao Dhakne M., “On mild solutions of nonlocal semilinear impulsive functional integro-differential equations”, Appl. Math. E-Notes., 13 (2013), 109–119 | MR | Zbl
[22] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989 | MR | Zbl
[23] Leiva H., Merentes N., Sanchez J. L., “Approximate controllability of semilinear reaction diffusion equation”, Math. Control Rel. Field., 2:2 (2012) | MR
[24] Leiva H., Merentes N., Sanchez J. L., “A characterization of semilinear dense range operators and applications”, Abstr. Appl. Anal., 2013 (2013), 729093 | DOI | MR | Zbl
[25] Leiva H., Merentes N., Sanchez J. L., “Interior controllability of the Benjamin–Bona–Mahony Equation”, J. Math. Appl., 2010, no. 33, 51–59 | MR | Zbl
[26] Leiva H., Merentes N., Sanchez J. L., “Interior controllability of the semilinear Benjamin–Bona–Mahony equation”, J. Math. Appl., 2012, no. 35, 97–109 | MR
[27] Leiva H., Merentes N., Sanchez J. L., “Approximate controllability of a semilinear heat equation”, Int. J. Partial Differ. Equations, 2013 (2013), 424309 | DOI | MR | Zbl
[28] Leiva H., “Rothe's fixed point theorem and controllability of semilinear nonautonomous systems”, Syst. Control Lett., 67 (2014), 14–18 | DOI | MR | Zbl
[29] Leiva H., “Controllability of semilinear impulsive nonautonomous systems”, Int. J. Control., 2014, 966759 | MR
[30] Leiva H., Merentes N., “Approximate controllability of the impulsive semilinear heat equation”, J. Math. Appl., 2015, no. 38, 85–104 | MR | Zbl
[31] Leiva H., “Approximate controllability of semilinear impulsive evolution equations”, Abstr. Appl. Anal., 2015 (2015), 797439 | DOI | MR | Zbl
[32] Liang Jin, Liu J. H., Xiao Ti-Jun,, “Nonlocal impulsive problems for nonlinear differential equations in Banach spaces”, Math. Comput. Model., 49 (2009), 798–804 | DOI | MR | Zbl
[33] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983 | MR | Zbl
[34] Protter M. H., “Unique continuation for elliptic equations”, Trans. Am. Math. Soc., 95:1 (1960), 81–91 | DOI | MR | Zbl
[35] Radhakrishnan B., Blachandran K., Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions, 10 (2012), 1 | MR | Zbl
[36] Selvi S., Mallika Arjunan M., “Controllability results for impulsive differential systems with finite delay”, J. Nonlin. Sci. Appl., 5 (2012), 206–219 | DOI | MR | Zbl
[37] Smart J. D. R., Fixed Point Theorems, Cambridge Univ. Press, 1974 | MR | Zbl
[38] Samoilenko A. M., Perestyuk N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995 | MR | Zbl