Symmetries of Hamiltonian systems on Lie algebroids
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 112-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study infinitesimal symmetries, natural infinitesimal symmetries, Newtonoid sections, infinitesimal Noether symmetries, and conservation laws for Hamiltonian systems within the general framework of Lie algebroids. Using dynamical covariant derivatives and Jacobi endomorphisms, we find invariant equations of some type of symmetries and prove that the canonical nonlinear connection induced by a regular Hamiltonian can be determined by these symmetries. Finally, we present examples from the optimal control theory that prove that the framework of Lie algebroids is more useful than the cotangent bundle in order to study the symmetries for the dynamics induced by a Hamiltonian function.
Keywords: infinitesimal symmetry, Hamiltonian system, conservation law, dynamical covariant derivative
Mots-clés : Lie algebroid, Jacobi endomorphism.
@article{INTO_2020_178_a8,
     author = {L. Popescu},
     title = {Symmetries of {Hamiltonian} systems on {Lie} algebroids},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {112--134},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/}
}
TY  - JOUR
AU  - L. Popescu
TI  - Symmetries of Hamiltonian systems on Lie algebroids
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 112
EP  - 134
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/
LA  - ru
ID  - INTO_2020_178_a8
ER  - 
%0 Journal Article
%A L. Popescu
%T Symmetries of Hamiltonian systems on Lie algebroids
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 112-134
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/
%G ru
%F INTO_2020_178_a8
L. Popescu. Symmetries of Hamiltonian systems on Lie algebroids. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 112-134. http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974

[2] Abraham R., Marsden J., Foundation of Mechanics, Benjamin, New York, 1978 | MR

[3] Arcuş C. M., “Mechanical systems in the generalized Lie algebroids framework”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450023 | DOI | MR | Zbl

[4] Barbero-Liñán M., Farré Puiggalí M., Martín de Diego D., “Inverse problem for Lagrangian systems on Lie algebroids and applications to reduction by symmetries”, Monatsh. Math., 180:4 (2016), 665–691 | DOI | MR | Zbl

[5] Berwald L., “On system of second order ODE's whose integral curves are topologically equivalent to the system of straight lines”, Ann. Math., 48 (1947), 93–215 | MR

[6] Bua L., Bucătaru I., Salgado M., “Symmetries, Newtonoid vector fields and conservation laws on the Lagrangian $k$-symplectic formalism”, Rev. Math. Phys., 24 (2012), 1250030 | DOI | MR | Zbl

[7] Bucătaru I., “Linear connection for systems of higher order differential equations”, Houston J. Math., 32:1 (2005), 315–332

[8] Bucătaru I., Dahl M. F., “Semi-basic $1$-form and Helmholtz conditions for the inverse problem of the calculus of variations”, J. Geom. Mech., 1:2 (2009), 159–180 | DOI | MR | Zbl

[9] Bucătaru I., Constantinescu O., Dahl M. F., “A geometric setting for systems of ordinary differential equations”, Int. J. Geom. Methods Mod. Phys., 8:6 (2011), 12019 | MR

[10] Cariñena J. F., Martinez E., “Generalized Jacobi equation and inverse problem in classical mechanics”, Proc. 18th Int. Colloq. “Group-Theoretical Methods in Physics” (Moscow, 1990), Nova Science, New York, 1991

[11] Cariñena J. F., Rodríguez-Olmos M., “Gauge equivalence and conserved quantities for Lagrangian systems on Lie algebroids”, J. Phys. A: Math. Theor., 42 (2009), 265209 | DOI | MR | Zbl

[12] Cariñena J. F., Gheorghiu I., Martí{n}ez E., “Jacobi fields for second-order differential equations on Lie algebroids”, Proc. 10th AIMS Int. Conf. “Dynamical Systems, Differential Equations and Applications” (Madrid), AIMS, 2015, 213–222 | MR

[13] Cortes J., Martínez E., “Mechanical control systems on Lie algebroids”, IMA J. Math. Control Inform., 21 (2004), 457–492 | DOI | MR | Zbl

[14] Castellani L., “Symmetries in constrained Hamiltonian systems”, Ann. Phys., 143:2 (1982), 357–371 | DOI | MR

[15] Crampin M., “Tangent bundle geometry for Lagrangian dynamics”, J. Phys. A: Math. Gen., 16 (1983), 3755–3772 | DOI | MR | Zbl

[16] Crampin M., Martínez E., Sarlet W., “Linear connections for system of second-order ordinary differential equations”, Ann. Inst. H. Poincaré., 65:2 (1996), 223–249 | MR | Zbl

[17] Crampin M., Pirani F. A. E., Applicable Differential Geometry, Cambridge Univ. Press, 1986 | MR | Zbl

[18] Crâsmareanu M., Ida C., “Almost analyticity on almost (para) complex Lie algebroids”, Res. Math., 67:34 (2015), 495–519 | DOI | MR

[19] Fernandes R. L., “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170 (2002), 119–179 | DOI | MR | Zbl

[20] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms”, Nederl. Akad. Wetensch. Proc. Ser. A., 59 (1956), 338–359 | DOI | MR | Zbl

[21] Gràcia X., Pons J. M., “Symmetries and infinitesimal symmetries of singular differential equations”, J. Phys. A: Math. Gen., 35 (2002), 5059–5077 | DOI | MR | Zbl

[22] Grabowski J., Urbanski P., “Tangent and cotangent lift and graded Lie algebra associated with Lie algebroids”, Ann. Global Anal. Geom., 15 (1997), 447–486 | DOI | MR | Zbl

[23] Grifone J., “Structure presque tangente et connections, I”, Ann. Inst. Fourier., 22:1 (1972), 287–334 | DOI | MR | Zbl

[24] Higgins P. J., Mackenzie K., “Algebraic constructions in the category of Lie algebroids”, J. Algebra., 129 (1990), 194–230 | DOI | MR | Zbl

[25] Hrimiuc D., Popescu L., “Nonlinear connections on dual Lie algebroids”, Balkan J. Geom. Appl., 11:1 (2006), 73–80 | MR | Zbl

[26] Hrimiuc D., Popescu L., “Geodesics of sub-Finslerian geometries”, Proc. Conf. “Differential Geometry and Its Applications” (Prague, 2004), Prague, 2005, 59–67 | MR | Zbl

[27] Jerie M., Prince G., “Jacobi fields and linear connections for arbitrary second-order ODEs”, J. Geom. Phys., 43 (2002), 351–370 | DOI | MR | Zbl

[28] de León M., Rodrigues P. R., Method of Differential Geometry in Analytical Mechanics, 1989, North-Holland, Amsterdam | MR

[29] de León M., Martín de Diego D., “Symmetries and constants of the motion for singular Lagrangian systems”, Int. J. Theor. Phys., 35:5 (1996), 975–1011 | DOI | MR | Zbl

[30] de León M., Martín de Diego D., Santamaria Merino A., “Symmetries in classical fiel theories”, Int. J. Geom. Meth. Mod. Phys., 5 (2004), 651–710 | DOI | MR | Zbl

[31] de León M., Marrero J. C., Martínez E.,, “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), 241–308 | DOI | MR

[32] de León M., Martín de Diego D., Salgado M., Vilariño S., “$k$-Symplectic formalism on Lie algebroids”, J. Phys. A: Math. Theor., 42 (2009), 385209 | DOI | MR | Zbl

[33] Libermann P., “Lie algebroids and mechanics”, Arch. Math. Brno., 1996, 147–162 | MR | Zbl

[34] Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[35] Mackenzie K., General Theory of Lie Groupoids and Lie Algebroids, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[36] Marle C. M., “Symmetries of Hamiltonian systems on symplectic and Poisson manifolds”, Similarity and Symmetry Methods, eds. Ganghoffer J. F., Mladenov I., Springer, 2014, 185–269 | MR | Zbl

[37] Marmo G., Mukunda N., “Symmetries and constant of the motion in the Lagrangian formalism on $TQ$”, Nuovo Cim. B., 92 (1986), 1–12 | DOI | MR

[38] Marsden J. E., Ratiu T., Introduction to Mechanics and Symmetry, Springer, 2013 | MR

[39] Martínez E., Cariñema J. F., Sarlet W., “Derivations of differential forms along the tangent bundle projection, II”, Differ. Geom. Appl., 3:1 (1993), 1–29 | DOI | MR | Zbl

[40] Martínez E., “Lagrangian mechanics on Lie algebroids”, Acta Appl. Math., 67 (2001), 295–320 | DOI | MR | Zbl

[41] Martínez E., Mestdag T., Sarlet W., “Lie algebroid structures and Lagrangian systems on affine bundles”, J. Geom. Phys., 44:1 (2002), 70–95 | DOI | MR | Zbl

[42] Mestdag T., Langerock B., “A Lie algebroid framework for non-holonomic systems”, J. Phys. A: Math. Gen., 38:5 (2005), 1097–1111 | DOI | MR | Zbl

[43] Miron R., Hrimiuc D., Shimada H., Sabău S., The Geometry of Hamilton and Lagrange Spaces, Springer, 2001 | MR

[44] Mukhanov V., Wipf A., “On the symmetries of Hamiltonian systems”, Int. J. Mod. Phys. A., 10:4 (1995), 579–610 | DOI | MR | Zbl

[45] Oproiu V., “Regular vector fields and connections on cotangent bundles”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 37:1 (1991), 87–104 | MR | Zbl

[46] Peyghan E., “Berwald-type and Yano-type connections on Lie algebroids”, Int. J. Geom. Meth. Mod. Phys., 12:10 (2015), 1550125 | DOI | MR | Zbl

[47] Popescu L., “The geometry of Lie algebroids and applications to optimal control”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 51 (2005), 155–170 | MR | Zbl

[48] Popescu L., “Geometrical structures on Lie algebroids”, Publ. Math. Debrecen., 72:1-2 (2008), 95–109 | MR | Zbl

[49] Popescu L., “Hamiltonian formalism on Lie algebroids and its applications”, Proc. Conf. “Differential Geometry and Its Applications” (Olomouc, 2007), World Scientific, Singapore, 2008, 665–673 | MR | Zbl

[50] Popescu L., “Lie algebroids framework for distributional systems”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 55:2 (2009), 373–390 | MR

[51] Popescu L., “Metric nonlinear connections on Lie algebroids”, Balkan J. Geom. Appl., 16:1 (2011), 111–121 | MR | Zbl

[52] Popescu L., “Metric non-linear connections on the prolongation of a Lie algebroid to its dual bundle”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 57 (2011), 211–220 | MR | Zbl

[53] Popescu L., “Dual structures on the prolongations of a Lie algebroid”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 59:2 (2013), 357–374 | MR

[54] Popescu L., “Geometrical structures on the cotangent bundle”, Int. J. Geom. Meth. Mod. Phys., 13:5 (2016), 1650071 | DOI | MR | Zbl

[55] Popescu L., “Symmetries of second order differential equations on Lie algebroids”, J. Geom. Phys., 117 (2017), 84–98 | DOI | MR | Zbl

[56] Popescu L., “Symmetries and conservation laws of Hamiltonian systems”, J. Geom. Phys., 151 (2020), 103638 | DOI | MR | Zbl

[57] Popescu L., Criveanu R., “A note on metric nonlinear connections on the cotangent bundle”, Carpathian J. Math., 27:2 (2011), 261–268 | MR | Zbl

[58] Prince G., “Toward a classification of dynamical symmetries in classical mechanics”, Bull. Austr. Math. Soc., 27 (1983), 53–71 | DOI | MR | Zbl

[59] Prince G., “A complete classification of dynamical symmetries in classical mechanics”, Bull. Austr. Math. Soc., 32 (1985), 299–308 | DOI | MR | Zbl

[60] Puta M., Hamiltonian Mechanical Systems and Geometric Quantization, Kluwer, Dordrecht, 1993 | MR | Zbl

[61] Román-Roy N., Salgado M., Vilariño S., “Symmetries and conservation laws in Günter $k$-symplectic formalism of field theory”, Rev. Math. Phys., 19:10 (2007), 1117–1147 | DOI | MR | Zbl

[62] Sarlet W., “Adjoint symmetries of second-order differential equations and generalizations”, Proc. Conf. “Differential Geometry and Its Applications” (Brno, 1989), World Scientific, Singapore, 1990, 412–421 | MR | Zbl

[63] Sarlet W., “Linear connections along the tangent bundle projection”, Proc. Conf. “Variations, Geometry and Physics” (Olomouc, 2007), New York, Nova Science, 2008 | MR

[64] Szilasi J., “A setting for spray and Finsler geometry”, Handbook of Finsler Geometry, Kluwer, 2003, 1183–1426 | MR | Zbl

[65] Weinstein A., “Lagrangian mechanics and groupoids”, Fields Inst. Commun., 7 (1996), 207–231 | MR | Zbl