Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a8, author = {L. Popescu}, title = {Symmetries of {Hamiltonian} systems on {Lie} algebroids}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {112--134}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/} }
TY - JOUR AU - L. Popescu TI - Symmetries of Hamiltonian systems on Lie algebroids JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 112 EP - 134 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/ LA - ru ID - INTO_2020_178_a8 ER -
L. Popescu. Symmetries of Hamiltonian systems on Lie algebroids. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 112-134. http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974
[2] Abraham R., Marsden J., Foundation of Mechanics, Benjamin, New York, 1978 | MR
[3] Arcuş C. M., “Mechanical systems in the generalized Lie algebroids framework”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450023 | DOI | MR | Zbl
[4] Barbero-Liñán M., Farré Puiggalí M., Martín de Diego D., “Inverse problem for Lagrangian systems on Lie algebroids and applications to reduction by symmetries”, Monatsh. Math., 180:4 (2016), 665–691 | DOI | MR | Zbl
[5] Berwald L., “On system of second order ODE's whose integral curves are topologically equivalent to the system of straight lines”, Ann. Math., 48 (1947), 93–215 | MR
[6] Bua L., Bucătaru I., Salgado M., “Symmetries, Newtonoid vector fields and conservation laws on the Lagrangian $k$-symplectic formalism”, Rev. Math. Phys., 24 (2012), 1250030 | DOI | MR | Zbl
[7] Bucătaru I., “Linear connection for systems of higher order differential equations”, Houston J. Math., 32:1 (2005), 315–332
[8] Bucătaru I., Dahl M. F., “Semi-basic $1$-form and Helmholtz conditions for the inverse problem of the calculus of variations”, J. Geom. Mech., 1:2 (2009), 159–180 | DOI | MR | Zbl
[9] Bucătaru I., Constantinescu O., Dahl M. F., “A geometric setting for systems of ordinary differential equations”, Int. J. Geom. Methods Mod. Phys., 8:6 (2011), 12019 | MR
[10] Cariñena J. F., Martinez E., “Generalized Jacobi equation and inverse problem in classical mechanics”, Proc. 18th Int. Colloq. “Group-Theoretical Methods in Physics” (Moscow, 1990), Nova Science, New York, 1991
[11] Cariñena J. F., Rodríguez-Olmos M., “Gauge equivalence and conserved quantities for Lagrangian systems on Lie algebroids”, J. Phys. A: Math. Theor., 42 (2009), 265209 | DOI | MR | Zbl
[12] Cariñena J. F., Gheorghiu I., Martí{n}ez E., “Jacobi fields for second-order differential equations on Lie algebroids”, Proc. 10th AIMS Int. Conf. “Dynamical Systems, Differential Equations and Applications” (Madrid), AIMS, 2015, 213–222 | MR
[13] Cortes J., Martínez E., “Mechanical control systems on Lie algebroids”, IMA J. Math. Control Inform., 21 (2004), 457–492 | DOI | MR | Zbl
[14] Castellani L., “Symmetries in constrained Hamiltonian systems”, Ann. Phys., 143:2 (1982), 357–371 | DOI | MR
[15] Crampin M., “Tangent bundle geometry for Lagrangian dynamics”, J. Phys. A: Math. Gen., 16 (1983), 3755–3772 | DOI | MR | Zbl
[16] Crampin M., Martínez E., Sarlet W., “Linear connections for system of second-order ordinary differential equations”, Ann. Inst. H. Poincaré., 65:2 (1996), 223–249 | MR | Zbl
[17] Crampin M., Pirani F. A. E., Applicable Differential Geometry, Cambridge Univ. Press, 1986 | MR | Zbl
[18] Crâsmareanu M., Ida C., “Almost analyticity on almost (para) complex Lie algebroids”, Res. Math., 67:34 (2015), 495–519 | DOI | MR
[19] Fernandes R. L., “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170 (2002), 119–179 | DOI | MR | Zbl
[20] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms”, Nederl. Akad. Wetensch. Proc. Ser. A., 59 (1956), 338–359 | DOI | MR | Zbl
[21] Gràcia X., Pons J. M., “Symmetries and infinitesimal symmetries of singular differential equations”, J. Phys. A: Math. Gen., 35 (2002), 5059–5077 | DOI | MR | Zbl
[22] Grabowski J., Urbanski P., “Tangent and cotangent lift and graded Lie algebra associated with Lie algebroids”, Ann. Global Anal. Geom., 15 (1997), 447–486 | DOI | MR | Zbl
[23] Grifone J., “Structure presque tangente et connections, I”, Ann. Inst. Fourier., 22:1 (1972), 287–334 | DOI | MR | Zbl
[24] Higgins P. J., Mackenzie K., “Algebraic constructions in the category of Lie algebroids”, J. Algebra., 129 (1990), 194–230 | DOI | MR | Zbl
[25] Hrimiuc D., Popescu L., “Nonlinear connections on dual Lie algebroids”, Balkan J. Geom. Appl., 11:1 (2006), 73–80 | MR | Zbl
[26] Hrimiuc D., Popescu L., “Geodesics of sub-Finslerian geometries”, Proc. Conf. “Differential Geometry and Its Applications” (Prague, 2004), Prague, 2005, 59–67 | MR | Zbl
[27] Jerie M., Prince G., “Jacobi fields and linear connections for arbitrary second-order ODEs”, J. Geom. Phys., 43 (2002), 351–370 | DOI | MR | Zbl
[28] de León M., Rodrigues P. R., Method of Differential Geometry in Analytical Mechanics, 1989, North-Holland, Amsterdam | MR
[29] de León M., Martín de Diego D., “Symmetries and constants of the motion for singular Lagrangian systems”, Int. J. Theor. Phys., 35:5 (1996), 975–1011 | DOI | MR | Zbl
[30] de León M., Martín de Diego D., Santamaria Merino A., “Symmetries in classical fiel theories”, Int. J. Geom. Meth. Mod. Phys., 5 (2004), 651–710 | DOI | MR | Zbl
[31] de León M., Marrero J. C., Martínez E.,, “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), 241–308 | DOI | MR
[32] de León M., Martín de Diego D., Salgado M., Vilariño S., “$k$-Symplectic formalism on Lie algebroids”, J. Phys. A: Math. Theor., 42 (2009), 385209 | DOI | MR | Zbl
[33] Libermann P., “Lie algebroids and mechanics”, Arch. Math. Brno., 1996, 147–162 | MR | Zbl
[34] Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[35] Mackenzie K., General Theory of Lie Groupoids and Lie Algebroids, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[36] Marle C. M., “Symmetries of Hamiltonian systems on symplectic and Poisson manifolds”, Similarity and Symmetry Methods, eds. Ganghoffer J. F., Mladenov I., Springer, 2014, 185–269 | MR | Zbl
[37] Marmo G., Mukunda N., “Symmetries and constant of the motion in the Lagrangian formalism on $TQ$”, Nuovo Cim. B., 92 (1986), 1–12 | DOI | MR
[38] Marsden J. E., Ratiu T., Introduction to Mechanics and Symmetry, Springer, 2013 | MR
[39] Martínez E., Cariñema J. F., Sarlet W., “Derivations of differential forms along the tangent bundle projection, II”, Differ. Geom. Appl., 3:1 (1993), 1–29 | DOI | MR | Zbl
[40] Martínez E., “Lagrangian mechanics on Lie algebroids”, Acta Appl. Math., 67 (2001), 295–320 | DOI | MR | Zbl
[41] Martínez E., Mestdag T., Sarlet W., “Lie algebroid structures and Lagrangian systems on affine bundles”, J. Geom. Phys., 44:1 (2002), 70–95 | DOI | MR | Zbl
[42] Mestdag T., Langerock B., “A Lie algebroid framework for non-holonomic systems”, J. Phys. A: Math. Gen., 38:5 (2005), 1097–1111 | DOI | MR | Zbl
[43] Miron R., Hrimiuc D., Shimada H., Sabău S., The Geometry of Hamilton and Lagrange Spaces, Springer, 2001 | MR
[44] Mukhanov V., Wipf A., “On the symmetries of Hamiltonian systems”, Int. J. Mod. Phys. A., 10:4 (1995), 579–610 | DOI | MR | Zbl
[45] Oproiu V., “Regular vector fields and connections on cotangent bundles”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 37:1 (1991), 87–104 | MR | Zbl
[46] Peyghan E., “Berwald-type and Yano-type connections on Lie algebroids”, Int. J. Geom. Meth. Mod. Phys., 12:10 (2015), 1550125 | DOI | MR | Zbl
[47] Popescu L., “The geometry of Lie algebroids and applications to optimal control”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 51 (2005), 155–170 | MR | Zbl
[48] Popescu L., “Geometrical structures on Lie algebroids”, Publ. Math. Debrecen., 72:1-2 (2008), 95–109 | MR | Zbl
[49] Popescu L., “Hamiltonian formalism on Lie algebroids and its applications”, Proc. Conf. “Differential Geometry and Its Applications” (Olomouc, 2007), World Scientific, Singapore, 2008, 665–673 | MR | Zbl
[50] Popescu L., “Lie algebroids framework for distributional systems”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 55:2 (2009), 373–390 | MR
[51] Popescu L., “Metric nonlinear connections on Lie algebroids”, Balkan J. Geom. Appl., 16:1 (2011), 111–121 | MR | Zbl
[52] Popescu L., “Metric non-linear connections on the prolongation of a Lie algebroid to its dual bundle”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 57 (2011), 211–220 | MR | Zbl
[53] Popescu L., “Dual structures on the prolongations of a Lie algebroid”, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 59:2 (2013), 357–374 | MR
[54] Popescu L., “Geometrical structures on the cotangent bundle”, Int. J. Geom. Meth. Mod. Phys., 13:5 (2016), 1650071 | DOI | MR | Zbl
[55] Popescu L., “Symmetries of second order differential equations on Lie algebroids”, J. Geom. Phys., 117 (2017), 84–98 | DOI | MR | Zbl
[56] Popescu L., “Symmetries and conservation laws of Hamiltonian systems”, J. Geom. Phys., 151 (2020), 103638 | DOI | MR | Zbl
[57] Popescu L., Criveanu R., “A note on metric nonlinear connections on the cotangent bundle”, Carpathian J. Math., 27:2 (2011), 261–268 | MR | Zbl
[58] Prince G., “Toward a classification of dynamical symmetries in classical mechanics”, Bull. Austr. Math. Soc., 27 (1983), 53–71 | DOI | MR | Zbl
[59] Prince G., “A complete classification of dynamical symmetries in classical mechanics”, Bull. Austr. Math. Soc., 32 (1985), 299–308 | DOI | MR | Zbl
[60] Puta M., Hamiltonian Mechanical Systems and Geometric Quantization, Kluwer, Dordrecht, 1993 | MR | Zbl
[61] Román-Roy N., Salgado M., Vilariño S., “Symmetries and conservation laws in Günter $k$-symplectic formalism of field theory”, Rev. Math. Phys., 19:10 (2007), 1117–1147 | DOI | MR | Zbl
[62] Sarlet W., “Adjoint symmetries of second-order differential equations and generalizations”, Proc. Conf. “Differential Geometry and Its Applications” (Brno, 1989), World Scientific, Singapore, 1990, 412–421 | MR | Zbl
[63] Sarlet W., “Linear connections along the tangent bundle projection”, Proc. Conf. “Variations, Geometry and Physics” (Olomouc, 2007), New York, Nova Science, 2008 | MR
[64] Szilasi J., “A setting for spray and Finsler geometry”, Handbook of Finsler Geometry, Kluwer, 2003, 1183–1426 | MR | Zbl
[65] Weinstein A., “Lagrangian mechanics and groupoids”, Fields Inst. Commun., 7 (1996), 207–231 | MR | Zbl