Symmetries of Hamiltonian systems on Lie algebroids
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 112-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we study infinitesimal symmetries, natural infinitesimal symmetries, Newtonoid sections, infinitesimal Noether symmetries, and conservation laws for Hamiltonian systems within the general framework of Lie algebroids. Using dynamical covariant derivatives and Jacobi endomorphisms, we find invariant equations of some type of symmetries and prove that the canonical nonlinear connection induced by a regular Hamiltonian can be determined by these symmetries. Finally, we present examples from the optimal control theory that prove that the framework of Lie algebroids is more useful than the cotangent bundle in order to study the symmetries for the dynamics induced by a Hamiltonian function.
Keywords:
infinitesimal symmetry, Hamiltonian system, conservation law, dynamical covariant derivative
Mots-clés : Lie algebroid, Jacobi endomorphism.
Mots-clés : Lie algebroid, Jacobi endomorphism.
@article{INTO_2020_178_a8,
author = {L. Popescu},
title = {Symmetries of {Hamiltonian} systems on {Lie} algebroids},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {112--134},
publisher = {mathdoc},
volume = {178},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/}
}
TY - JOUR AU - L. Popescu TI - Symmetries of Hamiltonian systems on Lie algebroids JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 112 EP - 134 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/ LA - ru ID - INTO_2020_178_a8 ER -
L. Popescu. Symmetries of Hamiltonian systems on Lie algebroids. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 112-134. http://geodesic.mathdoc.fr/item/INTO_2020_178_a8/