On solutions to Fokker--Planck equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 102-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find necessary and sufficient conditions for existence of a transformation of independent spatial variables that transforms the Fokker–Planck equation to an equation with constant coefficients. Using these conditions, we calculate explicit solutions for two-dimensional Fokker–Planck equations. Our motivation comes from applications in image processing, where the Fokker–Planck equation typically describes blurring processes.
Keywords: second-order partial differential operator, jet bundle, differential invariant, equivalence problem.
@article{INTO_2020_178_a7,
     author = {A. P. Mashtakov and V. A. Yumaguzhin and V. N. Yumaguzhina},
     title = {On solutions to {Fokker--Planck} equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {102--111},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/}
}
TY  - JOUR
AU  - A. P. Mashtakov
AU  - V. A. Yumaguzhin
AU  - V. N. Yumaguzhina
TI  - On solutions to Fokker--Planck equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 102
EP  - 111
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/
LA  - ru
ID  - INTO_2020_178_a7
ER  - 
%0 Journal Article
%A A. P. Mashtakov
%A V. A. Yumaguzhin
%A V. N. Yumaguzhina
%T On solutions to Fokker--Planck equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 102-111
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/
%G ru
%F INTO_2020_178_a7
A. P. Mashtakov; V. A. Yumaguzhin; V. N. Yumaguzhina. On solutions to Fokker--Planck equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 102-111. http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/

[1] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005

[2] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[3] Citti G., Sarti A., “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vision., 24:3 (2006), 307–326 | DOI | MR

[4] Curtis W. D., Miller F. R., Differential Manifolds and Theoretical Physics, Academic Press, Orlando, Florida, 1985 | MR | Zbl

[5] Krasil'shchik I. S., Lychagin V. V., Vinogradov A. M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986 | MR | Zbl

[6] Mashtakov A., Duits R., Sachkov Yu., Bekkers E., Beschastnyi I., “Tracking of lines in spherical images via sub-Riemannian geodesics on SO(3)”, J. Math. Imaging Vision., 58:2 (2017), 239–264 | DOI | MR | Zbl

[7] Perona P., Malik J., “Scale-space and edge detection using anisotropic diffusion”, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629–639 | DOI

[8] J. Petitot,, “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris., 97:2-3 (2003), 265–309 | DOI

[9] Romeny B. M. H., Front-End Vision and Multi-Scale Image Analysis, Springer, 2003

[10] Sanguinetti G., Citti G., Sarti A., “A model of natural image edge co-occurrence in the rototranslation group”, J. Vision., 10 (2010), 37 | DOI

[11] Shapiro L., Stockman G., Computer Vision, Upper Saddle River, Prentice Hall, New Jersey, 2001

[12] Sochen N. A., “Stochastic processes in vision: from Langevin to Beltrami”, Proc. 8th IEEE Int. Conf. on Computer Vision, 2001, 288–293 | DOI