On solutions to Fokker--Planck equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 102-111
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we find necessary and sufficient conditions for existence of a transformation of independent spatial variables that transforms the Fokker–Planck equation to an equation with constant coefficients. Using these conditions, we calculate explicit solutions for two-dimensional Fokker–Planck equations. Our motivation comes from applications in image processing, where the Fokker–Planck equation typically describes blurring processes.
Keywords:
second-order partial differential operator, jet bundle, differential invariant, equivalence problem.
@article{INTO_2020_178_a7,
author = {A. P. Mashtakov and V. A. Yumaguzhin and V. N. Yumaguzhina},
title = {On solutions to {Fokker--Planck} equations},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {102--111},
publisher = {mathdoc},
volume = {178},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/}
}
TY - JOUR AU - A. P. Mashtakov AU - V. A. Yumaguzhin AU - V. N. Yumaguzhina TI - On solutions to Fokker--Planck equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 102 EP - 111 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/ LA - ru ID - INTO_2020_178_a7 ER -
%0 Journal Article %A A. P. Mashtakov %A V. A. Yumaguzhin %A V. N. Yumaguzhina %T On solutions to Fokker--Planck equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 102-111 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/ %G ru %F INTO_2020_178_a7
A. P. Mashtakov; V. A. Yumaguzhin; V. N. Yumaguzhina. On solutions to Fokker--Planck equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 102-111. http://geodesic.mathdoc.fr/item/INTO_2020_178_a7/