A novel strategy to enlarge the domain of attraction of affine nonlinear systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a novel strategy to enlarge the domain of attraction of an asymptotically stable, affine nonlinear system is proposed. This method is based on the concept of mapping and relies on asymptotic stability of a nonlinear system image via a continuous and injective mapping. The goal of designing the controller is to map the domain of attraction of an open loop system into a larger domain, which is the domain of attraction of a closed loop system. To find a suitable map that can make desired changes in the shape and size of domain of attraction, a criterion is obtained and its implementation instruction is described through examples. Simulation results are provided to demonstrate the efficiency of the proposed method.
Mots-clés : domain of attraction
Keywords: asymptotic stability, affine nonlinear system, injective mapping.
@article{INTO_2020_178_a6,
     author = {M. Yadipour and F. Hashemzadeh and M. Baradarannia},
     title = {A novel strategy to enlarge the domain of attraction of affine nonlinear systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a6/}
}
TY  - JOUR
AU  - M. Yadipour
AU  - F. Hashemzadeh
AU  - M. Baradarannia
TI  - A novel strategy to enlarge the domain of attraction of affine nonlinear systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 91
EP  - 101
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a6/
LA  - ru
ID  - INTO_2020_178_a6
ER  - 
%0 Journal Article
%A M. Yadipour
%A F. Hashemzadeh
%A M. Baradarannia
%T A novel strategy to enlarge the domain of attraction of affine nonlinear systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 91-101
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a6/
%G ru
%F INTO_2020_178_a6
M. Yadipour; F. Hashemzadeh; M. Baradarannia. A novel strategy to enlarge the domain of attraction of affine nonlinear systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 91-101. http://geodesic.mathdoc.fr/item/INTO_2020_178_a6/

[1] Amte A. Y., Kate P. S., “Automatic generation of Lyapunov function using genetic programming approach”, Proc. 2015 Int. Conf. on Energy Systems and Applications, Dr. D. Y. Patil Inst. Eng. Technol., Pune, India 3, 2015, 771–775 | DOI

[2] Athanasopoulos N., Jungers R. M., “Computing the domain of attraction of switching systems subject to non-convex constraints”, Proc. 19th Int. Conf. on Hybrid Systems: Computation and Control, Association for Computing Machinery, New York, 2016, 41–50 | MR | Zbl

[3] Baier R., Gerdts M., “A computational method for non-convex reachable sets using optimal control”, Proc. Eur. Control Conference 2009, Budapest, 2009, 97–102 | DOI

[4] Cavoretto R., De Rossi A., Perracchione E., Venturino E., “Robust approximation algorithms for the detection of attraction basins in dynamical systems”, J. Sci. Comput., 68 (2016), 395–415 | DOI | MR | Zbl

[5] Chesi G., “Computing output feedback controllers to enlarge the domain of attraction in polynomial systems”, IEEE Trans. Automat. Control., 49 (2004), 1846—1853 | DOI | MR

[6] Chesi G., “Estimating the domain of attraction for non-polynomial systems via LMI optimizations”, Automatica., 45 (2009), 1536–1541 | DOI | MR | Zbl

[7] Doban A. I., Lazar M., Computation of Lyapunov functions for nonlinear differential equations via a Massera-type construction 1603.03287, 2016., arXiv: arXiv:1603.03287 [math.DS] | MR

[8] Doban A. I., Lazar M., “Feedback stabilization via rational control Lyapunov functions”, Proc. 54th IEEE Conf. on Decision and Control, Osaka, Japan, 2015, 1148–1153

[9] Ermolin V. S., Vlasova T. V., “Identification of the domain of attraction”, Proc. Int. Conf. "Stability and Control Processes, IEEE, 2015, 9–12

[10] Franze G., Famularo D., Casavola A., “Constrained nonlinear polynomial time-delay systems: A sum-of-squares approach to estimate the domain of attraction”, IEEE Trans. Automat. Control., 57 (2012), 2673–2679 | DOI | MR | Zbl

[11] Hamidi F., Jerbi H., Aggoune W., Djemai M., Abdelkrim M. N., “Enlarging the domain of attraction in nonlinear polynomial systems”, Int. J. Comput. Commun. Control., 8 (2013), 538–547 | DOI

[12] Han D., Althoff M., “Control synthesis for non-polynomial systems: A domain of attraction perspective”, Proc. 54th IEEE Conf. on Decision and Control, Osaka, Japan, 2015, 1160–1167

[13] Henrion D., Korda M., “Convex computation of the region of attraction of polynomial control systems”, IEEE Trans. Automat. Control., 59 (2014), 297–312 | DOI | MR | Zbl

[14] Khalil H. K., Noninear Systems, Prentice-Hall, Upper Saddle River, New Jersey, 1996

[15] Li Y., Lin Z., “On the estimation of the domain of attraction for linear systems with asymmetric actuator saturation via asymmetric Lyapunov functions”, Proc. 2016 Am. Control Conf., Boston, 2016, 1136–1141 | MR

[16] Loccufier M., Noldus E., “A new trajectory reversing method for estimating stability regions of autonomous nonlinear systems”, Nonlin. Dynam., 21 (2000), 265–288 | DOI | MR | Zbl

[17] Majumdar A., Vasudevan R., Tobenkin M. M., Tedrake R., “Convex optimization of nonlinear feedback controllers via occupation measures”, Int. J. Robotics Res., 33 (2014), 1209–1230 | DOI

[18] Matallana L.G., Blanco A.M., Bandoni J. A., “Nonlinear dynamic systems design based on the optimization of the domain of attraction”, Math. Comput. Model., 53 (2011), 731–745 | DOI | MR | Zbl

[19] Milani B. E., “Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls”, Automatica., 38 (2002), 2177–2184 | DOI | MR | Zbl

[20] Najafi E., Babuska R., Lopes G. A., “A fast sampling method for estimating the domain of attraction”, Nonlin. Dynam., 86 (2016), 823–834 | DOI | MR

[21] Nersesov S.G., Ashrafiuon H., Ghorbanian P., “On estimation of the domain of attraction for sliding mode control of underactuated nonlinear systems”, Int. J. Robust Nonlin. Control., 24 (2014), 811–824 | DOI | MR | Zbl

[22] Polcz P., Szederkenyi G., Peni T., “An improved method for estimating the domain of attraction of nonlinear systems containing rational functions”, J. Phys. Conf. Ser., 659 (2015), 012038 | DOI

[23] Pursche T., Swiatlak R., Tibken B., “Estimation of the domain of attraction for nonlinear autonomous systems using a bezoutian approach”, Proc. 2016 SICE Int. Symp. on Control Systems, Nanzan University, Nagoya, Japan, 2016, 1–6

[24] Rezaiee-Pajand M., Moghaddasie B., “Estimating the region of attraction via collocation for autonomous nonlinear systems”, Struct. Eng. Mech., 41 (2012), 263–284 | DOI

[25] Swiatlak R., Tibken B., Paradowski T., Dehnert R., “An interval arithmetic approach for the estimation of the robust domain of attraction for nonlinear autonomous systems with nonlinear uncertainties”, Proc. 2015 Am. Control Conf., 2015, 2679–2684 | DOI

[26] Tan W., Packard A., “Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming”, IEEE Trans. Automat. Control., 53 (2008), 565–571 | DOI | MR | Zbl

[27] Topcu U., Packard A.K., Seiler P., Balas G. J., “Robust region-of-attraction estimation”, IEEE Trans. Automat. Control., 55 (2010), 137–142 | DOI | MR | Zbl

[28] Wu M., Yang Z., Lin W., “Domain-of-attraction estimation for uncertain non-polynomial systems”, Commun. Nonlin. Sci. Numer. Simul., 19 (2014), 3044–3052 | DOI | MR | Zbl

[29] Yang H., Zhang L., Shi P., Hua C., “Enlarging the domain of attraction and maximising convergence rate for delta operator systems with actuator saturation”, Int. J. Control., 88 (2015), 2030–2043 | DOI | MR | Zbl

[30] Zecevic A. I., Siljak D. D., “Estimating the region of attraction for large-scale systems with uncertainties”, Automatica., 46 (2010), 445–451 | DOI | MR | Zbl