Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a5, author = {E. Zerrik and A. El Kabouss and R. Larhrissi}, title = {Output optimal control of infinite-dimensional hyperbolic bilinear systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {77--90}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a5/} }
TY - JOUR AU - E. Zerrik AU - A. El Kabouss AU - R. Larhrissi TI - Output optimal control of infinite-dimensional hyperbolic bilinear systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 77 EP - 90 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a5/ LA - ru ID - INTO_2020_178_a5 ER -
%0 Journal Article %A E. Zerrik %A A. El Kabouss %A R. Larhrissi %T Output optimal control of infinite-dimensional hyperbolic bilinear systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 77-90 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a5/ %G ru %F INTO_2020_178_a5
E. Zerrik; A. El Kabouss; R. Larhrissi. Output optimal control of infinite-dimensional hyperbolic bilinear systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 77-90. http://geodesic.mathdoc.fr/item/INTO_2020_178_a5/
[1] Adams R. A., Sobolev Spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl
[2] Ball J. M., Marsden J. E. Slemrod M., “Controllability for distributed bilinear systems”, SIAM J. Control Optim., 20:4 (1982), 575–597 | DOI | MR | Zbl
[3] Beauchard K., “Local controllability and noncontrollability for a 1d wave equation with bilinear control”, J. Differ. Equations., 250:4 (2011), 2064–2098 | DOI | MR | Zbl
[4] Beauchard K., “Local controllability of a one-dimensional beam equation”, SIAM J. Control Optim., 47:3 (2008), 1219–1273 | DOI | MR | Zbl
[5] Brezis H., Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1983 | MR
[6] El Jai A., Zerrik E., Afiri L., Systems Theory : Modeling, Analysis and Control, Presse Univ. Perpignan, 2009
[7] El Jai A., Zerrik E., Pritchard A. , “Regional controllability of distributed parameter systems”, Int. J. Control., 62:6 (1995), 1351–1365 | DOI | MR | Zbl
[8] Evans L. C., Partial Differential Equations, Am. Math. Soc., Providence, Rhode Island, 1998 | Zbl
[9] Ferreira S. C. Jr., Martins M. L., Vilela M. J., “A reaction-diffusion model for the growth of avascular tumor”, Phys. Rev., 65:2 (2002), 021907 | MR
[10] Jacques S., “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl., 146:6 (1987), 65–96 | MR | Zbl
[11] Khapalov A. Y., Controllability of Partial Differential Equations Governed by Multiplicative Controls, Springer-Verlag, 2010 | MR | Zbl
[12] Liang M., “Bilinear optimal control for a wave equation”, Math. Models Meth. Appl. Sci., 9:1 (1999), 45–68 | DOI | MR | Zbl
[13] Ouzahra M., “Controllability of the wave equation with bilinear controls”, Eur. J. Control., 20:2 (2014), 57–63 | DOI | MR | Zbl
[14] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl
[15] Zerrik E., El Kabouss A., “Regional optimal control of a class of bilinear systems”, IMA J. Math. Control Inform., 34:4 (2017), 1157–1175 | MR | Zbl
[16] Zerrik E., El Kabouss A., “Regional optimal control of a class of infinite-dimensional bilinear systems”, Int. J. Control., 90:7 (2017), 1495–1504 | DOI | MR | Zbl
[17] Zerrik E., Larhrissi R., “Regional target control of the wave equation”, Int. J. Syst. Sci., 32:10 (2001), 1233–1242 | DOI | MR | Zbl
[18] Zerrik E., Larhrissi R., “Regional boundary controllability of hyperbolic systems. Numerical approach”, J. Dynam. Control syst., 8:3 (2002), 293–311 | DOI | MR | Zbl
[19] Zerrik E., Ould sidi M., “\textquotedblleft Regional controllability for infinite-dimensional bilinear systems: Approach and simulations”, Int. J. Control., 84:12 (2011), 2108–2116 | DOI | MR | Zbl
[20] Ztot K., Zerrik E., Bourray H., “Regional control problem for distributed bilinear systems: Approach and simulations”, Int. J. Appl. Math. Comput. Sci., 21:3 (2011), 499–580 | DOI | MR