Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 57-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the stabilization and the partial exact controllability of an inhomogeneous multidimensional thermoelastic diffusion problem by a memory function introduced on a part of the boundary of the material. By using the Nakao difference inequality, we prove that the energy of the system decays to zero exponentially at a rate determined explicitly by the physical parameters. Then by the Hilbert uniqueness method combined with Russell's principle “controllability via stabilizability” we prove that after certain threshold time moment the considered system is partially controllable under a smallness restriction on the coupling parameters stress-temperature and stress-diffusion. The boundary control function is determined explicitly.
Keywords: thermoelastic diffusion, exponential decay, boundary memory, controllability.
@article{INTO_2020_178_a4,
     author = {M. Aouadi and K. Boulehmi},
     title = {Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by {Hilbert's} uniqueness method},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/}
}
TY  - JOUR
AU  - M. Aouadi
AU  - K. Boulehmi
TI  - Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 57
EP  - 76
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/
LA  - ru
ID  - INTO_2020_178_a4
ER  - 
%0 Journal Article
%A M. Aouadi
%A K. Boulehmi
%T Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 57-76
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/
%G ru
%F INTO_2020_178_a4
M. Aouadi; K. Boulehmi. Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 57-76. http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/

[1] Adams R., Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[2] Aouadi M., “Generalized theory of thermoelstic diffusion for anisotropic media”, J. Therm. Stresses., 31 (2008), 270–285 | DOI

[3] Aouadi M., Boulehmi K., “Partial exact controllability for inhomogeneous multidimensional thermoelastic diffusion problem”, J. Evol. Equat. Control Theory., 5 (2016), 201–224 | DOI | MR | Zbl

[4] Aouadi M., Lazzari B., Nibbi R., “Exponential decay in thermoelastic materials with voids and dissipative boundary without thermal dissipation”, Z. Angew. Math. Phys., 63, 961–973 | DOI | MR | Zbl

[5] Aouadi M., Lazzari B., Nibbi R., “Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary”, Mecanica., 48 (2013), 2159–2171 | DOI | MR | Zbl

[6] Apolaya R. F., “Exact controllability for temporally wave equation”, Portug. Math., 51 (1994), 475–488 | MR | Zbl

[7] Barral P., Quintela P., “A numerical method for simulation of thermal stresses during casting of aluminium slabs”, Comput. Methods Appl. Mech. Eng., 178 (1998), 69–88 | DOI | MR

[8] Bermudez A., Muñ{o}z M. C., Quintela P., “Numerical solution of a three-dimensional thermoelectric problem taking place in an aluminum electrolytic cell”, Comput. Methods Appl. Mech. Eng., 106 (1993), 129–142 | DOI | MR | Zbl

[9] Boulehmi K., Aouadi M., “Decay of solutions in inhomogeneous thermoelastic diffusion bars”, Appl. Anal., 93 (2014), 281–304 | DOI | MR | Zbl

[10] Dafermos C. M., “On the existance and the asymptotic stability of solution to the equations of linear thermoelasticity”, Arch. Rat. Mech. Anal., 29 (1968), 241–271 | DOI | MR | Zbl

[11] De Teresa L., Zuazua E., “Controllability of the linear system of thermoelastic plates”, Adv. Differ. Equations., 1 (1996), 369–402 | MR | Zbl

[12] Gao H., Muñoz Rivera J. E., “On the exponential stability of thermoelastic problem with memory”, Appl. Anal., 78 (2001), 379–403 | DOI | MR | Zbl

[13] Hansen S. W., “Boundary control of a one-dimensional linear thermoelastic rod”, SIAM J. Control Optim., 32 (1994), 1054–1074 | DOI | MR

[14] Komornick V., Zuazua E., “A direct method for boundary stabilisation of the wave equation”, J. Math. Pures Appl., 69 (1990), 33–54 | MR

[15] Lasiecka I., Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia, 2002 | MR | Zbl

[16] Lebeau G., Zuazua E., “Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire”, C. R. Acad. Sci. Paris. Ser. I. Math., 324 (1997), 409–415 | DOI | MR | Zbl

[17] Lebeau G., Zuazua E., “Null controllability of a system of linear thermoelasticity”, Arch. Rat. Mech. Anal., 141 (1998), 297–329 | DOI | MR | Zbl

[18] Lions J. L., Contôlabilité Exacte Perturbations et Stabilisations des Systèmes Distribués. Tome 2. Pertubations, Masson, Paris, 1988 | MR

[19] Lions J. L., Magenes E., Nonhomogeneous Boundary Value Problem and Applications, Springer-Verlag, 1972 | MR

[20] Liu W. J., “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity”, ESAIM: Control Optim. Calc. Var., 3 (1998), 23–48 | DOI | MR | Zbl

[21] Liu W. J., “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity. Correction”, ESAIM: Control Optim. Calc. Var., 3 (1998), 323–327 | DOI | MR | Zbl

[22] Liu W. J., Williams G. H., “Partial exact controllability for the linear thermo-viscoelastic model”, Electr. J. Differ. Equations., 1998 (1998), 1–11 | MR

[23] Liu W. J., Zuazua E., “Uniform stabilization of higher-dimensional system of thermoelasticity with a nonlinear boundary feedback”, Quart. Appl. Math., 59 (2001), 269–314 | DOI | MR

[24] Muñ{o}z Rivera J. E., Olivera M. L., “Stability in inhomogeneous and anisotropic thermoelasticity”, Boll. U.M.I., 7 (1997), 115–127 | MR

[25] Nakao M., “A difference inequality and its application to nonlinear evolution equations”, J. Math. Soc. Jpn., 30 (1978), 291–315 | MR

[26] Nandakumaran A. K., George R. K., “Partial exact controllability of linear thermoelastic system”, Indian J. Math., 37 (1995), 165–174 | MR

[27] Narukawa K., “Boundary value control of thermoelastic systems”, Hiroshima Math. J., 13 (1983), 227–272 | DOI | MR | Zbl

[28] Nohel J. A., Shea D. F., “Frequency domain methods for Volterra equations”, Adv. Math., 22 (1976), 278–304 | DOI | MR | Zbl

[29] Prüss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993 | MR | Zbl

[30] Propst G., Prüss J., “On wave equations with boundary dissipation of memory type”, J. Integral Equations Appl., 8 (1996), 99–123 | DOI | MR | Zbl

[31] Russell D. L., “Controllability and stabilizability theory for linear partial differential equations”, Recent Progr. Open Questions SIAM Rew., 310 (1990), 801–806 | MR

[32] Staffans O. J., “An inequality for positive definite Volterra kernels”, Proc. Am. Math. Soc., 58 (1976), 205–210 | DOI | MR | Zbl

[33] Staffans O. J., “On a nonlinear hyperbolic Volterra equation”, SIAM J. Math.Anal., 11 (1980), 793–812 | DOI | MR | Zbl

[34] Zuazua E., “Controllability of the linear system of thermoelasticity”, J. Math. Pure. Appl., 74 (1995), 303–346 | MR