Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a4, author = {M. Aouadi and K. Boulehmi}, title = {Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by {Hilbert's} uniqueness method}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {57--76}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/} }
TY - JOUR AU - M. Aouadi AU - K. Boulehmi TI - Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 57 EP - 76 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/ LA - ru ID - INTO_2020_178_a4 ER -
%0 Journal Article %A M. Aouadi %A K. Boulehmi %T Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 57-76 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/ %G ru %F INTO_2020_178_a4
M. Aouadi; K. Boulehmi. Boundary controllability for inhomogeneous multidimensional thermoelastic diffusion problem by Hilbert's uniqueness method. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 57-76. http://geodesic.mathdoc.fr/item/INTO_2020_178_a4/
[1] Adams R., Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl
[2] Aouadi M., “Generalized theory of thermoelstic diffusion for anisotropic media”, J. Therm. Stresses., 31 (2008), 270–285 | DOI
[3] Aouadi M., Boulehmi K., “Partial exact controllability for inhomogeneous multidimensional thermoelastic diffusion problem”, J. Evol. Equat. Control Theory., 5 (2016), 201–224 | DOI | MR | Zbl
[4] Aouadi M., Lazzari B., Nibbi R., “Exponential decay in thermoelastic materials with voids and dissipative boundary without thermal dissipation”, Z. Angew. Math. Phys., 63, 961–973 | DOI | MR | Zbl
[5] Aouadi M., Lazzari B., Nibbi R., “Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary”, Mecanica., 48 (2013), 2159–2171 | DOI | MR | Zbl
[6] Apolaya R. F., “Exact controllability for temporally wave equation”, Portug. Math., 51 (1994), 475–488 | MR | Zbl
[7] Barral P., Quintela P., “A numerical method for simulation of thermal stresses during casting of aluminium slabs”, Comput. Methods Appl. Mech. Eng., 178 (1998), 69–88 | DOI | MR
[8] Bermudez A., Muñ{o}z M. C., Quintela P., “Numerical solution of a three-dimensional thermoelectric problem taking place in an aluminum electrolytic cell”, Comput. Methods Appl. Mech. Eng., 106 (1993), 129–142 | DOI | MR | Zbl
[9] Boulehmi K., Aouadi M., “Decay of solutions in inhomogeneous thermoelastic diffusion bars”, Appl. Anal., 93 (2014), 281–304 | DOI | MR | Zbl
[10] Dafermos C. M., “On the existance and the asymptotic stability of solution to the equations of linear thermoelasticity”, Arch. Rat. Mech. Anal., 29 (1968), 241–271 | DOI | MR | Zbl
[11] De Teresa L., Zuazua E., “Controllability of the linear system of thermoelastic plates”, Adv. Differ. Equations., 1 (1996), 369–402 | MR | Zbl
[12] Gao H., Muñoz Rivera J. E., “On the exponential stability of thermoelastic problem with memory”, Appl. Anal., 78 (2001), 379–403 | DOI | MR | Zbl
[13] Hansen S. W., “Boundary control of a one-dimensional linear thermoelastic rod”, SIAM J. Control Optim., 32 (1994), 1054–1074 | DOI | MR
[14] Komornick V., Zuazua E., “A direct method for boundary stabilisation of the wave equation”, J. Math. Pures Appl., 69 (1990), 33–54 | MR
[15] Lasiecka I., Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia, 2002 | MR | Zbl
[16] Lebeau G., Zuazua E., “Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire”, C. R. Acad. Sci. Paris. Ser. I. Math., 324 (1997), 409–415 | DOI | MR | Zbl
[17] Lebeau G., Zuazua E., “Null controllability of a system of linear thermoelasticity”, Arch. Rat. Mech. Anal., 141 (1998), 297–329 | DOI | MR | Zbl
[18] Lions J. L., Contôlabilité Exacte Perturbations et Stabilisations des Systèmes Distribués. Tome 2. Pertubations, Masson, Paris, 1988 | MR
[19] Lions J. L., Magenes E., Nonhomogeneous Boundary Value Problem and Applications, Springer-Verlag, 1972 | MR
[20] Liu W. J., “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity”, ESAIM: Control Optim. Calc. Var., 3 (1998), 23–48 | DOI | MR | Zbl
[21] Liu W. J., “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity. Correction”, ESAIM: Control Optim. Calc. Var., 3 (1998), 323–327 | DOI | MR | Zbl
[22] Liu W. J., Williams G. H., “Partial exact controllability for the linear thermo-viscoelastic model”, Electr. J. Differ. Equations., 1998 (1998), 1–11 | MR
[23] Liu W. J., Zuazua E., “Uniform stabilization of higher-dimensional system of thermoelasticity with a nonlinear boundary feedback”, Quart. Appl. Math., 59 (2001), 269–314 | DOI | MR
[24] Muñ{o}z Rivera J. E., Olivera M. L., “Stability in inhomogeneous and anisotropic thermoelasticity”, Boll. U.M.I., 7 (1997), 115–127 | MR
[25] Nakao M., “A difference inequality and its application to nonlinear evolution equations”, J. Math. Soc. Jpn., 30 (1978), 291–315 | MR
[26] Nandakumaran A. K., George R. K., “Partial exact controllability of linear thermoelastic system”, Indian J. Math., 37 (1995), 165–174 | MR
[27] Narukawa K., “Boundary value control of thermoelastic systems”, Hiroshima Math. J., 13 (1983), 227–272 | DOI | MR | Zbl
[28] Nohel J. A., Shea D. F., “Frequency domain methods for Volterra equations”, Adv. Math., 22 (1976), 278–304 | DOI | MR | Zbl
[29] Prüss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993 | MR | Zbl
[30] Propst G., Prüss J., “On wave equations with boundary dissipation of memory type”, J. Integral Equations Appl., 8 (1996), 99–123 | DOI | MR | Zbl
[31] Russell D. L., “Controllability and stabilizability theory for linear partial differential equations”, Recent Progr. Open Questions SIAM Rew., 310 (1990), 801–806 | MR
[32] Staffans O. J., “An inequality for positive definite Volterra kernels”, Proc. Am. Math. Soc., 58 (1976), 205–210 | DOI | MR | Zbl
[33] Staffans O. J., “On a nonlinear hyperbolic Volterra equation”, SIAM J. Math.Anal., 11 (1980), 793–812 | DOI | MR | Zbl
[34] Zuazua E., “Controllability of the linear system of thermoelasticity”, J. Math. Pure. Appl., 74 (1995), 303–346 | MR