Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a3, author = {Y.-K. Chang and J. Alzabut and R. Ponce}, title = {Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {41--56}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/} }
TY - JOUR AU - Y.-K. Chang AU - J. Alzabut AU - R. Ponce TI - Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 41 EP - 56 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/ LA - ru ID - INTO_2020_178_a3 ER -
%0 Journal Article %A Y.-K. Chang %A J. Alzabut %A R. Ponce %T Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 41-56 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/ %G ru %F INTO_2020_178_a3
Y.-K. Chang; J. Alzabut; R. Ponce. Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 41-56. http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/
[1] Abbas S., “Pseudo almost automorphic solutions of some nonlinear integro-differential equations”, Comput. Math. Appl., 62:5 (2011), 2259–2272 | DOI | MR | Zbl
[2] Abbas S., Xia Y.,, “Existence and attractivity of $k$-almost automorphic solutions of a model of cellular neural network with delay”, Acta Math. Sci., 1 (2013), 290–302 | DOI | MR | Zbl
[3] Álvarez E., Lizama C., “Weighted pseudo almost automorphic mild solutions for two-term fractional-order differential equations”, Appl. Math. Comput., 271 (2015), 154–167 | DOI | MR | Zbl
[4] Blot J., Mophou G. M., N'Guérékata G. M., Pennequin D., “Weighted pseudo almost automorphic functions and applications to abstract differential equations”, Nonlin. Anal., 71 (2009), 903–909 | DOI | MR | Zbl
[5] Blot J., Cieutat P., Ezzinbi K., “Measure theory and pseudo almost automorphic functions: New developments and aplications”, Nonlin. Anal., 75 (2012), 2426–2447 | DOI | MR | Zbl
[6] Caicedo A., Cuevas C., Mophou G. M., N'Guérékata G. M., “Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces”, J. Franklin Inst., 349 (2012), 1–24 | DOI | MR | Zbl
[7] Chang Y. K., Luo X. X., “Asymptotic behavior of solutions to neutral functional differential equations with infinite delay”, Publ. Math. Deb., 86 (2015), 1–17 | DOI | MR | Zbl
[8] Chang Y. K., Ponce R., “Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces”, J. Integral Equations Appl., 30:3 (2018), 347–369 | DOI | MR | Zbl
[9] Chen J., Xiao T., Liang J., “Uniform exponential stability of solutions to abstract Volterra equations”, J. Evol. Equations., 4 (2009), 661–674 | DOI | MR | Zbl
[10] Chen J., Liang J., Xiao T., “Stability of solutions to integro–differential equations in Hilbert spaces”, Bull. Belg. Math. Soc., 18 (2011), 781–792 | DOI | MR | Zbl
[11] Coleman B. D., Gurtin M. E., “Equipresence and constitutive equation for rigid heat conductors”, Z. Angew. Math. Phys., 18 (1967), 199–208 | DOI | MR
[12] Cuevas C., Lizama C., “Almost automorphic solutions to integral equations on the line”, Semigroup Forum., 79 (2009), 461–472 | DOI | MR | Zbl
[13] Cuevas C., Souza J., “Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-diffeferential equations with infinite delay”, Nonlin. Anal., 72 (2010), 1683–1689 | DOI | MR | Zbl
[14] de Andrade B., Cuevas C., Henríquez E., “Asymptotic periodicity and almost automorphy for a class of Volterra intego-differential equations”, Math. Methods Appl. Sci., 35 (2012), 795–811 | DOI | MR | Zbl
[15] Diagana T., Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York, 2013 | MR | Zbl
[16] Ding H. S., Liang J., Xiao T. J., “Pseudo almost periodic solutions to integro-differential equations of heat conduction in materials with memory”, Nonlin. Anal. RWA., 13 (2012), 2659–2670 | DOI | MR | Zbl
[17] Ding H. S., Liang J., Nieto J., “Weighted pseudo almost periodic functions and applications to evolution equations with delay”, Appl. Math. Comput., 219 (2013), 8949–8958 | DOI | MR | Zbl
[18] Gurtin M., Pipkin A., “A general theory of heat conduction with finite wave speeds”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl
[19] Hale J. K., Verduyn Lunel S. M., Introduction to Functional-Differential Equations, Springer-Verlag, New York, 1993 | MR | Zbl
[20] Hernández E., Henríquez H., “Pseudo-almost periodic solutions for non-autonomous neutral differential equations with unbounded delay”, Nonlin. Anal. RWA., 9 (2008), 430–437 | DOI | MR | Zbl
[21] Henríquez H. R., Cuevas C., Caicedo A., “Asymptotically periodic solutions of neutral partial differential equations with infinite delay”, Commun. Pure Appl. Anal., 12 (2013), 2031–2068 | DOI | MR | Zbl
[22] Henríquez H. R., Cuevas C., “Almost automorphy for abstract neutral differential equations via control theory”, Ann. Mat., 192 (2013), 393–405 | DOI | MR | Zbl
[23] Hino Y., Murakami S., Naito T., Functional-Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991 | MR | Zbl
[24] Keyantuo V., Lizama C., Warma M., “Asymptotic behavior of fractional-order semilinear evolution equations”, Differ. Integral Equations., 26 (2013), 757–780 | MR | Zbl
[25] Liang J., Zhang J., Xiao T. J., “Composition of pseudo almost automorphic and asymptotically almost automorphic functions”, J. Math. Anal. Appl., 340 (2008), 1493–1499 | DOI | MR | Zbl
[26] Lizama C., N'Guérékata G. M., “Bounded mild solutions for semilinear integro-differential equations in Banach spaces”, Integral Equ. Operator Theory., 68 (2010), 207–227 | DOI | MR | Zbl
[27] Lizama C., Ponce R., “Bounded solutions to a class of semilinear integro-differential equations in Banach spaces”, Nonlin. Anal., 74 (2011), 3397–3406 | DOI | MR | Zbl
[28] N'Guérékata G. M., Topics in Almost Automorphy, Springer-Verlag, New York, 2005 | MR | Zbl
[29] Ponce R., “Bounded mild solutions to fractional integro-differential equations in Banach spaces”, Semigroup Forum., 87 (2013), 377–392 | DOI | MR | Zbl
[30] Santos J., Cuevas C., “Asymptotically almost automporphic solutions of abstract fractional intego-differential neutral equations”, Appl. Math. Lett., 23 (2010), 960–965 | DOI | MR | Zbl
[31] Wu J., Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl
[32] Shu X. B., Xu F., Shi Y., “$S$-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations”, Appl. Math. Comput., 270, 768–776 | DOI | MR | Zbl
[33] Xia Z., “Pseudo asymptotically periodic solutions for Volterra intego-differential equations”, Math. Methods Appl. Sci., 38 (2015), 799–810 | DOI | MR | Zbl
[34] Xiao T. J., Liang J., Zhang J., “Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces”, Semigroup Forum., 76 (2008), 518–524 | DOI | MR | Zbl
[35] You P., “Characteristic conditions for a $C_0$-semigroup with continuity in the uniform operator topology for $t > 0$ in Hilbert space”, Proc. Am. Math. Soc., 116 (1992), 991–997 | DOI | MR | Zbl
[36] Zhou Y., Basic Theory of Fractional Differential Equations, World Scientific, 2014 | MR | Zbl