Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 41-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider recurrent behavior of bounded solutions of a functional integro-differential equation arising in the theory of heat conduction in materials with memory. We give a new version of the theorem on the composition of measure pseudo-almost-automorphic functions involved in delay. Based on recently obtained results on the uniform exponential stability and the contraction mapping principle, we prove some existence and uniqueness theorems for the recurrence of bounded mild solutions of equations with infinite delay. Also, we present an example of a partial integro-differential equation appearing in the study of heat conduction.
Keywords: almost automorphy, bounded solution, integro-differential equation, infinite delay.
@article{INTO_2020_178_a3,
     author = {Y.-K. Chang and J. Alzabut and R. Ponce},
     title = {Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--56},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/}
}
TY  - JOUR
AU  - Y.-K. Chang
AU  - J. Alzabut
AU  - R. Ponce
TI  - Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 41
EP  - 56
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/
LA  - ru
ID  - INTO_2020_178_a3
ER  - 
%0 Journal Article
%A Y.-K. Chang
%A J. Alzabut
%A R. Ponce
%T Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 41-56
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/
%G ru
%F INTO_2020_178_a3
Y.-K. Chang; J. Alzabut; R. Ponce. Bounded solutions to functional integro-differential equations arising from heat conduction in materials with memory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 41-56. http://geodesic.mathdoc.fr/item/INTO_2020_178_a3/

[1] Abbas S., “Pseudo almost automorphic solutions of some nonlinear integro-differential equations”, Comput. Math. Appl., 62:5 (2011), 2259–2272 | DOI | MR | Zbl

[2] Abbas S., Xia Y.,, “Existence and attractivity of $k$-almost automorphic solutions of a model of cellular neural network with delay”, Acta Math. Sci., 1 (2013), 290–302 | DOI | MR | Zbl

[3] Álvarez E., Lizama C., “Weighted pseudo almost automorphic mild solutions for two-term fractional-order differential equations”, Appl. Math. Comput., 271 (2015), 154–167 | DOI | MR | Zbl

[4] Blot J., Mophou G. M., N'Guérékata G. M., Pennequin D., “Weighted pseudo almost automorphic functions and applications to abstract differential equations”, Nonlin. Anal., 71 (2009), 903–909 | DOI | MR | Zbl

[5] Blot J., Cieutat P., Ezzinbi K., “Measure theory and pseudo almost automorphic functions: New developments and aplications”, Nonlin. Anal., 75 (2012), 2426–2447 | DOI | MR | Zbl

[6] Caicedo A., Cuevas C., Mophou G. M., N'Guérékata G. M., “Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces”, J. Franklin Inst., 349 (2012), 1–24 | DOI | MR | Zbl

[7] Chang Y. K., Luo X. X., “Asymptotic behavior of solutions to neutral functional differential equations with infinite delay”, Publ. Math. Deb., 86 (2015), 1–17 | DOI | MR | Zbl

[8] Chang Y. K., Ponce R., “Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces”, J. Integral Equations Appl., 30:3 (2018), 347–369 | DOI | MR | Zbl

[9] Chen J., Xiao T., Liang J., “Uniform exponential stability of solutions to abstract Volterra equations”, J. Evol. Equations., 4 (2009), 661–674 | DOI | MR | Zbl

[10] Chen J., Liang J., Xiao T., “Stability of solutions to integro–differential equations in Hilbert spaces”, Bull. Belg. Math. Soc., 18 (2011), 781–792 | DOI | MR | Zbl

[11] Coleman B. D., Gurtin M. E., “Equipresence and constitutive equation for rigid heat conductors”, Z. Angew. Math. Phys., 18 (1967), 199–208 | DOI | MR

[12] Cuevas C., Lizama C., “Almost automorphic solutions to integral equations on the line”, Semigroup Forum., 79 (2009), 461–472 | DOI | MR | Zbl

[13] Cuevas C., Souza J., “Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-diffeferential equations with infinite delay”, Nonlin. Anal., 72 (2010), 1683–1689 | DOI | MR | Zbl

[14] de Andrade B., Cuevas C., Henríquez E., “Asymptotic periodicity and almost automorphy for a class of Volterra intego-differential equations”, Math. Methods Appl. Sci., 35 (2012), 795–811 | DOI | MR | Zbl

[15] Diagana T., Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York, 2013 | MR | Zbl

[16] Ding H. S., Liang J., Xiao T. J., “Pseudo almost periodic solutions to integro-differential equations of heat conduction in materials with memory”, Nonlin. Anal. RWA., 13 (2012), 2659–2670 | DOI | MR | Zbl

[17] Ding H. S., Liang J., Nieto J., “Weighted pseudo almost periodic functions and applications to evolution equations with delay”, Appl. Math. Comput., 219 (2013), 8949–8958 | DOI | MR | Zbl

[18] Gurtin M., Pipkin A., “A general theory of heat conduction with finite wave speeds”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[19] Hale J. K., Verduyn Lunel S. M., Introduction to Functional-Differential Equations, Springer-Verlag, New York, 1993 | MR | Zbl

[20] Hernández E., Henríquez H., “Pseudo-almost periodic solutions for non-autonomous neutral differential equations with unbounded delay”, Nonlin. Anal. RWA., 9 (2008), 430–437 | DOI | MR | Zbl

[21] Henríquez H. R., Cuevas C., Caicedo A., “Asymptotically periodic solutions of neutral partial differential equations with infinite delay”, Commun. Pure Appl. Anal., 12 (2013), 2031–2068 | DOI | MR | Zbl

[22] Henríquez H. R., Cuevas C., “Almost automorphy for abstract neutral differential equations via control theory”, Ann. Mat., 192 (2013), 393–405 | DOI | MR | Zbl

[23] Hino Y., Murakami S., Naito T., Functional-Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991 | MR | Zbl

[24] Keyantuo V., Lizama C., Warma M., “Asymptotic behavior of fractional-order semilinear evolution equations”, Differ. Integral Equations., 26 (2013), 757–780 | MR | Zbl

[25] Liang J., Zhang J., Xiao T. J., “Composition of pseudo almost automorphic and asymptotically almost automorphic functions”, J. Math. Anal. Appl., 340 (2008), 1493–1499 | DOI | MR | Zbl

[26] Lizama C., N'Guérékata G. M., “Bounded mild solutions for semilinear integro-differential equations in Banach spaces”, Integral Equ. Operator Theory., 68 (2010), 207–227 | DOI | MR | Zbl

[27] Lizama C., Ponce R., “Bounded solutions to a class of semilinear integro-differential equations in Banach spaces”, Nonlin. Anal., 74 (2011), 3397–3406 | DOI | MR | Zbl

[28] N'Guérékata G. M., Topics in Almost Automorphy, Springer-Verlag, New York, 2005 | MR | Zbl

[29] Ponce R., “Bounded mild solutions to fractional integro-differential equations in Banach spaces”, Semigroup Forum., 87 (2013), 377–392 | DOI | MR | Zbl

[30] Santos J., Cuevas C., “Asymptotically almost automporphic solutions of abstract fractional intego-differential neutral equations”, Appl. Math. Lett., 23 (2010), 960–965 | DOI | MR | Zbl

[31] Wu J., Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl

[32] Shu X. B., Xu F., Shi Y., “$S$-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations”, Appl. Math. Comput., 270, 768–776 | DOI | MR | Zbl

[33] Xia Z., “Pseudo asymptotically periodic solutions for Volterra intego-differential equations”, Math. Methods Appl. Sci., 38 (2015), 799–810 | DOI | MR | Zbl

[34] Xiao T. J., Liang J., Zhang J., “Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces”, Semigroup Forum., 76 (2008), 518–524 | DOI | MR | Zbl

[35] You P., “Characteristic conditions for a $C_0$-semigroup with continuity in the uniform operator topology for $t > 0$ in Hilbert space”, Proc. Am. Math. Soc., 116 (1992), 991–997 | DOI | MR | Zbl

[36] Zhou Y., Basic Theory of Fractional Differential Equations, World Scientific, 2014 | MR | Zbl