Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a2, author = {D. Carrasco-Olivera and R. Metzger and C. Morales}, title = {Logarithmic expansion, entropy, and dimension for set-valued maps}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {31--40}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/} }
TY - JOUR AU - D. Carrasco-Olivera AU - R. Metzger AU - C. Morales TI - Logarithmic expansion, entropy, and dimension for set-valued maps JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 31 EP - 40 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/ LA - ru ID - INTO_2020_178_a2 ER -
%0 Journal Article %A D. Carrasco-Olivera %A R. Metzger %A C. Morales %T Logarithmic expansion, entropy, and dimension for set-valued maps %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 31-40 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/ %G ru %F INTO_2020_178_a2
D. Carrasco-Olivera; R. Metzger; C. Morales. Logarithmic expansion, entropy, and dimension for set-valued maps. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 31-40. http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/
[1] Dinaburg E. I., “Sootnoshenie mezhdu topologicheskoi entropiei i metricheskoi entropiei”, Dokl. AN SSSR., 190:1 (1970), 19–22 | Zbl
[2] Kolmogorov A. N., “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, Tr. Mat. in-ta im. V. A. Steklova., 169 (1985), 94–98
[3] Sinai Ya. G., “O ponyatii entropii dinamicheskoi sistemy”, Dokl. AN SSSR., 124 (1959), 768–771 | Zbl
[4] Khinchin A. Ya., “Ob osnovnykh teoremakh teorii informatsii”, Usp. mat nauk., 11:1 (67) (1956), 17–75 | MR | Zbl
[5] Adler R. L., Konheim A. G., McAndrew M. H., “Topological entropy”, Trans. Am. Math. Soc., 114 (1965), 309–319 | DOI | MR | Zbl
[6] Akin E., The General Topology of Dynamical Systems, Am. Math. Soc., Providence, Rhode Island, 1993 | Zbl
[7] Aubin J.-P., Cellina A., Differential Inclusions. Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984 | MR | Zbl
[8] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, Massachusetts, 2009 | MR | Zbl
[9] Aubin J.-P., Frankowska H., Lasota A. , “Poincaré's recurrence theorem for set-valued dynamical systems”, Ann. Polon. Math., 54:1 (1991), 85–91 | DOI | MR | Zbl
[10] Barreira L., Dimension and Recurrence in Hyperbolic Dynamics, Birkhäuser, Basel, 2008 | MR | Zbl
[11] Barreira L., Pesin Y., Schmeling J., “Dimension and product structure of hyperbolic measures”, Ann. Math. (2), 149:3 (1999), 755–783 | DOI | MR | Zbl
[12] Blumenthal L. M., “A new concept in distance geometry with applications to spherical subsets”, Bull. Am. Math. Soc., 47 (1941), 435–443 | DOI | MR
[13] Boltzmann L. , “Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht”, Wiener Berichte., 76 (1877), 373–435
[14] Bowen R., “Entropy for group endomorphisms and homogeneous spaces”, Trans. Am. Math. Soc., 153 (1971), 401–414 | DOI | MR | Zbl
[15] Burachik R. S., Iusem A. N., Set-Valued Mappings and Enlargements of Monotone Operators, Springer-Verlag, New York, 2008 | MR
[16] Carrasco-Olivera D., Metzger R., Morales C. A., “Topological entropy for set-valued maps”, Discr. Contin. Dyn. Syst. Ser. B, 20:10 (2015), 3461–3474 | MR | Zbl
[17] Cheng W.-C., Zhao Y., Cao Y., “Pressures for asymptotically sub-additive potentials under a mistake function”, Discr. Contin. Dyn. Syst., 32:2 (2012), 487–497 | DOI | MR | Zbl
[18] Clausius R., “Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie”, Ann. Phys., 125, 353–400
[19] Clausius R., The Mechanical Theory of Heat with Its Applications to the Steam Engine and to Physical Properties of Bodies, John van Voorst, London, 1867
[20] Dai X., Zhou Z., Geng X., “Some relations between Hausdorff dimensions and entropies”, Sci. China Ser. A., 41:10 (1998), 1068–1075 | DOI | MR | Zbl
[21] Downarowicz T., Entropy in Dynamical Systems, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl
[22] Fathi A., “Expansiveness, hyperbolicity and Hausdorff dimension”, Commun. Math. Phys., 126:2 (1989), 249–262 | DOI | MR | Zbl
[23] Gillam B. E., “A new set of postulates for Euclidean geometry”, Revista Ci. Lima., 1940, 869–899 | MR | Zbl
[24] Hirsch M., “Asymptotic phase, shadowing and reaction-diffusion systems”, Lect. Notes Pure Appl. Math., 152 (1994), 87–99 | MR | Zbl
[25] Katok A., “Fifty years of entropy in dynamics: 1958–2007”, J. Mod. Dyn., 1:4 (2007), 545–596 | DOI | MR | Zbl
[26] Katok A., “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137–173 | DOI | MR | Zbl
[27] Maschler M., Peleg B., “Stable sets and stable points of set-valued dynamic systems with applications to game theory”, SIAM J. Control Optim., 14:6 (1976), 985–995 | DOI | MR | Zbl
[28] Mañé R., “Expansive homeomorphisms and topological dimension”, Trans. Am. Math. Soc., 252 (1979), 313–319 | DOI | MR | Zbl
[29] McMillan B., “The basic theorems of information theory”, Ann. Math. Stat., 24 (1953), 196–219 | DOI | MR | Zbl
[30] Reddy W. L., “Expanding maps on compact metric spaces”, Topol. Appl., 13:3 (1982), 327–334 | DOI | MR | Zbl
[31] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1997 | MR | Zbl
[32] Schreiber S., “Expansion rates and Lyapunov exponents”, Discr. Contin. Dynam. Syst., 3:3 (1997), 433–438 | DOI | MR | Zbl
[33] Shannon C. E., “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423, 623–656 | DOI | MR | Zbl
[34] Sinai Y., “Kolmogorov–Sinai entropy”, Scholarpedia., 4:3 (2009), 2034 | DOI
[35] Tarafdar E., Watson P., Yuan X.-Z., “Poincare's recurrence theorems for set-valued dynamical systems”, Appl. Math. Lett., 10:6 (1997), 37–44 | DOI | MR | Zbl
[36] Tarafdar E., Yuan X.-Z. , “The set-valued dynamic system and its applications to Pareto optima”, Acta Appl. Math., 46:1 (1997), 93–106 | DOI | MR | Zbl
[37] von Neumann J., Mathematische Grundlagen der Quantenmechanik, Springer-Verlag, Berlin–New York, 1968 (in German) | MR | Zbl
[38] Walters P., An Introduction to Ergodic Theory, Springer-Verlag, New York–Berlin, 1982 | MR | Zbl
[39] Williams R. K., “A note on expansive mappings”, Proc. Am. Math. Soc., 22 (1969), 145–147 | DOI | MR | Zbl