Logarithmic expansion, entropy, and dimension for set-valued maps
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a lower bound for the entropy of a (not necessarily invariant) Borel probability measure with respect to an upper semicontinuous set-valued map as the product of the lower dimension of the measure and the logarithmic expansion rate. This is a generalization of the well-known measure-preserving single-valued case.
Keywords:
logarithm expansion, metric entropy
Mots-clés : dimension.
Mots-clés : dimension.
@article{INTO_2020_178_a2,
author = {D. Carrasco-Olivera and R. Metzger and C. Morales},
title = {Logarithmic expansion, entropy, and dimension for set-valued maps},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {31--40},
publisher = {mathdoc},
volume = {178},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/}
}
TY - JOUR AU - D. Carrasco-Olivera AU - R. Metzger AU - C. Morales TI - Logarithmic expansion, entropy, and dimension for set-valued maps JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 31 EP - 40 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/ LA - ru ID - INTO_2020_178_a2 ER -
%0 Journal Article %A D. Carrasco-Olivera %A R. Metzger %A C. Morales %T Logarithmic expansion, entropy, and dimension for set-valued maps %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 31-40 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/ %G ru %F INTO_2020_178_a2
D. Carrasco-Olivera; R. Metzger; C. Morales. Logarithmic expansion, entropy, and dimension for set-valued maps. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 31-40. http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/