Logarithmic expansion, entropy, and dimension for set-valued maps
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 31-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a lower bound for the entropy of a (not necessarily invariant) Borel probability measure with respect to an upper semicontinuous set-valued map as the product of the lower dimension of the measure and the logarithmic expansion rate. This is a generalization of the well-known measure-preserving single-valued case.
Keywords: logarithm expansion, metric entropy
Mots-clés : dimension.
@article{INTO_2020_178_a2,
     author = {D. Carrasco-Olivera and R. Metzger and C. Morales},
     title = {Logarithmic expansion, entropy, and dimension for set-valued maps},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/}
}
TY  - JOUR
AU  - D. Carrasco-Olivera
AU  - R. Metzger
AU  - C. Morales
TI  - Logarithmic expansion, entropy, and dimension for set-valued maps
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 31
EP  - 40
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/
LA  - ru
ID  - INTO_2020_178_a2
ER  - 
%0 Journal Article
%A D. Carrasco-Olivera
%A R. Metzger
%A C. Morales
%T Logarithmic expansion, entropy, and dimension for set-valued maps
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 31-40
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/
%G ru
%F INTO_2020_178_a2
D. Carrasco-Olivera; R. Metzger; C. Morales. Logarithmic expansion, entropy, and dimension for set-valued maps. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 31-40. http://geodesic.mathdoc.fr/item/INTO_2020_178_a2/