Regional optimal control problem for a vibrating plate
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the problem on the regional optimal control of a vibrating plate in a spatial domain $\Omega$. We obtain a bounded control that drives such a system from an initial state to a desired state in a finite time, only on a subdomain $\omega$ of $\Omega$. We prove that a regional optimal control exists characterize this control. Also we propose a condition that ensures the uniqueness of an optimal control and develop an algorithm for numerical simulations.
Keywords: distributed bilinear system, plate equation, regional controllability, optimal control.
@article{INTO_2020_178_a1,
     author = {E. Zerrik and A. Ait Aadi and R. Larhrissi},
     title = {Regional optimal control problem for a vibrating plate},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/}
}
TY  - JOUR
AU  - E. Zerrik
AU  - A. Ait Aadi
AU  - R. Larhrissi
TI  - Regional optimal control problem for a vibrating plate
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 20
EP  - 30
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/
LA  - ru
ID  - INTO_2020_178_a1
ER  - 
%0 Journal Article
%A E. Zerrik
%A A. Ait Aadi
%A R. Larhrissi
%T Regional optimal control problem for a vibrating plate
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 20-30
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/
%G ru
%F INTO_2020_178_a1
E. Zerrik; A. Ait Aadi; R. Larhrissi. Regional optimal control problem for a vibrating plate. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 20-30. http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/

[1] Addou A., Benbrik A., “Existence and uniqueness of optimal control for a distributed parameter bilinear systems”, J. Dynam. Control Syst., 8 (2002), 141–152 | DOI | MR | Zbl

[2] Ball J. M., Marsden J. E., and Slemrod M., “Controllability for distributed bilinear systems”, SIAM J. Control Optim., 20 (1982), 575–597 | DOI | MR | Zbl

[3] Bradley M. E., Lenhart S., “Bilinear optimal control of a Kirchhoff plate”, Syst. Control Lett., 22 (1994), 27–38 | DOI | MR | Zbl

[4] Bradley M. E., Lenhart S., Yong J., “Bilinear optimal control of the velocity term in a Kirchhoff plate equation”, J. Math. Anal. Appl., 238 (1999), 451–467 | DOI | MR | Zbl

[5] Bradley M. E., Lenhart S., “Bilinear spatial control of the velocity term in a Kirchhoff plate”, Electron. J. Differ. Equations., 2001 (2001), 27 | MR | Zbl

[6] El Jai A., Simon M. C., Zerrik E., Prirchard A. J., “Regional controllability of distributed parameter systems”, Int. J. Control., 62 (1995), 1351–1365 | DOI | MR | Zbl

[7] Joshi H. R., “Optimal control of the convective velocity coefficient in a parabolic problem”, Nonlin. Anal. Theory Methods Appl., 63 (2005), 1383–1390 | DOI

[8] Lenhart S., “Optimal control of a convective-diffusive fluid problem”, J. Math. Models Meth. Appl. Sci., 5 (1995), 225–237 | DOI | MR | Zbl

[9] Liang M., “Bilinear optimal control for a wave equation”, J. Math. Models Meth. Appl. Sci., 9 (1999), 45–68 | DOI | MR | Zbl

[10] Lions J. L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Masson, Paris, 1988 | MR

[11] Rudin W., Real and Complex analysis, McGraw-Hill, 1987 | MR | Zbl

[12] Zerrik E., Ould Sidi M., “Regional controllability for infinite dimensional distributed bilinear systems”, Int. J. Control., 84 (2011), 2108–2116 | DOI | MR | Zbl

[13] Ztot K., Zerrik E., Bourray H.,, “Regional control problem for distributed bilinear systems”, Int. J. Appl. Math. Comput. Sci., 2 (2011), 499–508 | DOI | MR

[14] Zuazua E., “Contrôlabilité exacte d'une modèles de plaques en un temps arbitrairement petit”, C. R. Acad. Sci. Paris. Ser. I. Math., 304:7 (1987), 173–176 | MR | Zbl