Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_178_a1, author = {E. Zerrik and A. Ait Aadi and R. Larhrissi}, title = {Regional optimal control problem for a vibrating plate}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {20--30}, publisher = {mathdoc}, volume = {178}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/} }
TY - JOUR AU - E. Zerrik AU - A. Ait Aadi AU - R. Larhrissi TI - Regional optimal control problem for a vibrating plate JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 20 EP - 30 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/ LA - ru ID - INTO_2020_178_a1 ER -
%0 Journal Article %A E. Zerrik %A A. Ait Aadi %A R. Larhrissi %T Regional optimal control problem for a vibrating plate %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 20-30 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/ %G ru %F INTO_2020_178_a1
E. Zerrik; A. Ait Aadi; R. Larhrissi. Regional optimal control problem for a vibrating plate. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 20-30. http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/
[1] Addou A., Benbrik A., “Existence and uniqueness of optimal control for a distributed parameter bilinear systems”, J. Dynam. Control Syst., 8 (2002), 141–152 | DOI | MR | Zbl
[2] Ball J. M., Marsden J. E., and Slemrod M., “Controllability for distributed bilinear systems”, SIAM J. Control Optim., 20 (1982), 575–597 | DOI | MR | Zbl
[3] Bradley M. E., Lenhart S., “Bilinear optimal control of a Kirchhoff plate”, Syst. Control Lett., 22 (1994), 27–38 | DOI | MR | Zbl
[4] Bradley M. E., Lenhart S., Yong J., “Bilinear optimal control of the velocity term in a Kirchhoff plate equation”, J. Math. Anal. Appl., 238 (1999), 451–467 | DOI | MR | Zbl
[5] Bradley M. E., Lenhart S., “Bilinear spatial control of the velocity term in a Kirchhoff plate”, Electron. J. Differ. Equations., 2001 (2001), 27 | MR | Zbl
[6] El Jai A., Simon M. C., Zerrik E., Prirchard A. J., “Regional controllability of distributed parameter systems”, Int. J. Control., 62 (1995), 1351–1365 | DOI | MR | Zbl
[7] Joshi H. R., “Optimal control of the convective velocity coefficient in a parabolic problem”, Nonlin. Anal. Theory Methods Appl., 63 (2005), 1383–1390 | DOI
[8] Lenhart S., “Optimal control of a convective-diffusive fluid problem”, J. Math. Models Meth. Appl. Sci., 5 (1995), 225–237 | DOI | MR | Zbl
[9] Liang M., “Bilinear optimal control for a wave equation”, J. Math. Models Meth. Appl. Sci., 9 (1999), 45–68 | DOI | MR | Zbl
[10] Lions J. L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Masson, Paris, 1988 | MR
[11] Rudin W., Real and Complex analysis, McGraw-Hill, 1987 | MR | Zbl
[12] Zerrik E., Ould Sidi M., “Regional controllability for infinite dimensional distributed bilinear systems”, Int. J. Control., 84 (2011), 2108–2116 | DOI | MR | Zbl
[13] Ztot K., Zerrik E., Bourray H.,, “Regional control problem for distributed bilinear systems”, Int. J. Appl. Math. Comput. Sci., 2 (2011), 499–508 | DOI | MR
[14] Zuazua E., “Contrôlabilité exacte d'une modèles de plaques en un temps arbitrairement petit”, C. R. Acad. Sci. Paris. Ser. I. Math., 304:7 (1987), 173–176 | MR | Zbl