Regional optimal control problem for a vibrating plate
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 20-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine the problem on the regional optimal control of a vibrating plate in a spatial domain $\Omega$. We obtain a bounded control that drives such a system from an initial state to a desired state in a finite time, only on a subdomain $\omega$ of $\Omega$. We prove that a regional optimal control exists characterize this control. Also we propose a condition that ensures the uniqueness of an optimal control and develop an algorithm for numerical simulations.
Keywords:
distributed bilinear system, plate equation, regional controllability, optimal control.
@article{INTO_2020_178_a1,
author = {E. Zerrik and A. Ait Aadi and R. Larhrissi},
title = {Regional optimal control problem for a vibrating plate},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {20--30},
publisher = {mathdoc},
volume = {178},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/}
}
TY - JOUR AU - E. Zerrik AU - A. Ait Aadi AU - R. Larhrissi TI - Regional optimal control problem for a vibrating plate JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 20 EP - 30 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/ LA - ru ID - INTO_2020_178_a1 ER -
%0 Journal Article %A E. Zerrik %A A. Ait Aadi %A R. Larhrissi %T Regional optimal control problem for a vibrating plate %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 20-30 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/ %G ru %F INTO_2020_178_a1
E. Zerrik; A. Ait Aadi; R. Larhrissi. Regional optimal control problem for a vibrating plate. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 20-30. http://geodesic.mathdoc.fr/item/INTO_2020_178_a1/