$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 87-96
Voir la notice de l'article provenant de la source Math-Net.Ru
The cohomology algebra of the space $H^*(X)$ defines neither cohomology modules of the loop space $H^*(\Omega X)$ nor cohomologies of the free loop space $H^*(\Lambda X)$. But by the author's minimality theorem, there exists a structure of $A(\infty)$-algebra $(H^*(X),\{m_i\})$ on $H^*(X)$, which determines $H^*(\Omega X)$. We also show that the same $A(\infty)$-algebra $(H^*(X),\{m_i\})$ determines also cohomology modules $H^*(\Lambda X)$.
Keywords:
Hochschild homology, $A(\infty)$-algebra, cohomology algebra, cohomology module, loop space.
Mots-clés : morphism
Mots-clés : morphism
@article{INTO_2020_177_a9,
author = {T. V. Kadeishvili},
title = {$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {87--96},
publisher = {mathdoc},
volume = {177},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/}
}
TY - JOUR AU - T. V. Kadeishvili TI - $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 87 EP - 96 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/ LA - ru ID - INTO_2020_177_a9 ER -
%0 Journal Article %A T. V. Kadeishvili %T $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 87-96 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/ %G ru %F INTO_2020_177_a9
T. V. Kadeishvili. $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 87-96. http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/