Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_177_a9, author = {T. V. Kadeishvili}, title = {$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {87--96}, publisher = {mathdoc}, volume = {177}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/} }
TY - JOUR AU - T. V. Kadeishvili TI - $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 87 EP - 96 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/ LA - ru ID - INTO_2020_177_a9 ER -
%0 Journal Article %A T. V. Kadeishvili %T $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 87-96 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/ %G ru %F INTO_2020_177_a9
T. V. Kadeishvili. $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 87-96. http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/
[1] Kadeishvili T. V., “K teorii gomologii rassloennykh prostranstv”, Usp. mat. nauk., 35:3 (213) (1980), 183–188 | MR | Zbl
[2] Kadeishvili T. V., “Struktura $A(\infty )$-algebry i kogomologii Khokhshilda i Kharrisona”, Tr. Mat. in-ta im. A. Razmadze., 91 (1988), 19–27 | Zbl
[3] Getzler E., Jones J. D. S., “$A_\infty$-Algebras and the cyclic bar complex”, Ill. J. Math., 34:2 (1990), 256–283 | DOI | MR | Zbl
[4] Jones J. D. S., “Cyclic homology and equivariant homology”, Invent. Math., 87 (1987), 403–423 | DOI | MR | Zbl
[5] Kadeishvili T., On the differentials of spectral sequence of a fiber bundle, arXiv: math/0609747v1 [math.DG] | MR
[6] Kadeishvili T., “Twisting elements in homotopy $G$-algebras”, Progr. Math., 287 (2011), 181–200 | DOI | MR
[7] J.-L. Loday, Free loop space and homology, arXiv: 1110.0405v1 [math.DG] | MR
[8] Markl M., “A cohomology theory for $A(m)$-algebras and applications”, J. Pure Appl. Algebra., 83:2 (1992), 141–175 | DOI | MR | Zbl
[9] Mescher S., A primer on A-infinity-algebras and their Hochschild homology, arXiv: 1601.03963v1 [math.RA]
[10] Seidel P., “Symplectic homology as Hochschild homology”, Proc. Symp. Pure Math., 80 (2009), 415––434 | DOI | MR | Zbl
[11] Stasheff J. D., “Homotopy associativity of H-spaces, I, II”, Trans. Am. Math. Soc., 108 (1963), 275–312 | MR | Zbl
[12] Terilla J., Tradler T., Deformations of associative algebraswith inner products, arXiv: math/0305052v1 [math.QA] | MR