$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cohomology algebra of the space $H^*(X)$ defines neither cohomology modules of the loop space $H^*(\Omega X)$ nor cohomologies of the free loop space $H^*(\Lambda X)$. But by the author's minimality theorem, there exists a structure of $A(\infty)$-algebra $(H^*(X),\{m_i\})$ on $H^*(X)$, which determines $H^*(\Omega X)$. We also show that the same $A(\infty)$-algebra $(H^*(X),\{m_i\})$ determines also cohomology modules $H^*(\Lambda X)$.
Keywords: Hochschild homology, $A(\infty)$-algebra, cohomology algebra, cohomology module, loop space.
Mots-clés : morphism
@article{INTO_2020_177_a9,
     author = {T. V. Kadeishvili},
     title = {$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/}
}
TY  - JOUR
AU  - T. V. Kadeishvili
TI  - $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 87
EP  - 96
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/
LA  - ru
ID  - INTO_2020_177_a9
ER  - 
%0 Journal Article
%A T. V. Kadeishvili
%T $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 87-96
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/
%G ru
%F INTO_2020_177_a9
T. V. Kadeishvili. $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 87-96. http://geodesic.mathdoc.fr/item/INTO_2020_177_a9/

[1] Kadeishvili T. V., “K teorii gomologii rassloennykh prostranstv”, Usp. mat. nauk., 35:3 (213) (1980), 183–188 | MR | Zbl

[2] Kadeishvili T. V., “Struktura $A(\infty )$-algebry i kogomologii Khokhshilda i Kharrisona”, Tr. Mat. in-ta im. A. Razmadze., 91 (1988), 19–27 | Zbl

[3] Getzler E., Jones J. D. S., “$A_\infty$-Algebras and the cyclic bar complex”, Ill. J. Math., 34:2 (1990), 256–283 | DOI | MR | Zbl

[4] Jones J. D. S., “Cyclic homology and equivariant homology”, Invent. Math., 87 (1987), 403–423 | DOI | MR | Zbl

[5] Kadeishvili T., On the differentials of spectral sequence of a fiber bundle, arXiv: math/0609747v1 [math.DG] | MR

[6] Kadeishvili T., “Twisting elements in homotopy $G$-algebras”, Progr. Math., 287 (2011), 181–200 | DOI | MR

[7] J.-L. Loday, Free loop space and homology, arXiv: 1110.0405v1 [math.DG] | MR

[8] Markl M., “A cohomology theory for $A(m)$-algebras and applications”, J. Pure Appl. Algebra., 83:2 (1992), 141–175 | DOI | MR | Zbl

[9] Mescher S., A primer on A-infinity-algebras and their Hochschild homology, arXiv: 1601.03963v1 [math.RA]

[10] Seidel P., “Symplectic homology as Hochschild homology”, Proc. Symp. Pure Math., 80 (2009), 415––434 | DOI | MR | Zbl

[11] Stasheff J. D., “Homotopy associativity of H-spaces, I, II”, Trans. Am. Math. Soc., 108 (1963), 275–312 | MR | Zbl

[12] Terilla J., Tradler T., Deformations of associative algebraswith inner products, arXiv: math/0305052v1 [math.QA] | MR