On one-way ring homomorphisms
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 80-86

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we propose a new candidate for a one-way ring homomorphism induced by a one-way (non-abelian) group homomorphism. A multi-party digital signature scheme is also given as an application of the proposed one-way ring homomorphism.
Keywords: one-way homomorphism, group ring, multi-party digital signature scheme.
@article{INTO_2020_177_a8,
     author = {N. Inassaridze and M. Khazaradze and \`E. V. Khmaladze and B. Mesablishvili},
     title = {On one-way ring homomorphisms},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/}
}
TY  - JOUR
AU  - N. Inassaridze
AU  - M. Khazaradze
AU  - È. V. Khmaladze
AU  - B. Mesablishvili
TI  - On one-way ring homomorphisms
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 80
EP  - 86
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/
LA  - ru
ID  - INTO_2020_177_a8
ER  - 
%0 Journal Article
%A N. Inassaridze
%A M. Khazaradze
%A È. V. Khmaladze
%A B. Mesablishvili
%T On one-way ring homomorphisms
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 80-86
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/
%G ru
%F INTO_2020_177_a8
N. Inassaridze; M. Khazaradze; È. V. Khmaladze; B. Mesablishvili. On one-way ring homomorphisms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 80-86. http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/