On one-way ring homomorphisms
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we propose a new candidate for a one-way ring homomorphism induced by a one-way (non-abelian) group homomorphism. A multi-party digital signature scheme is also given as an application of the proposed one-way ring homomorphism.
Keywords: one-way homomorphism, group ring, multi-party digital signature scheme.
@article{INTO_2020_177_a8,
     author = {N. Inassaridze and M. Khazaradze and \`E. V. Khmaladze and B. Mesablishvili},
     title = {On one-way ring homomorphisms},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/}
}
TY  - JOUR
AU  - N. Inassaridze
AU  - M. Khazaradze
AU  - È. V. Khmaladze
AU  - B. Mesablishvili
TI  - On one-way ring homomorphisms
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 80
EP  - 86
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/
LA  - ru
ID  - INTO_2020_177_a8
ER  - 
%0 Journal Article
%A N. Inassaridze
%A M. Khazaradze
%A È. V. Khmaladze
%A B. Mesablishvili
%T On one-way ring homomorphisms
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 80-86
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/
%G ru
%F INTO_2020_177_a8
N. Inassaridze; M. Khazaradze; È. V. Khmaladze; B. Mesablishvili. On one-way ring homomorphisms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 80-86. http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/

[1] Anshel I., Anshel M., Goldfeld D., “An algebraic method for public-key cryptography”, Math. Res. Lett., 6 (1999), 287–291 | DOI | MR | Zbl

[2] Chida E., Nishizeki T., Ohmori M., Shizuva H., “On the one-way algebraic homomorphism”, IEICE Trans. Fundam., E79-A:1 (1996), 54–60

[3] Delfs H., Knebl H., Introduction to Cryptography. Principles and Applications, Springer-Verlag, Berlin–Heidelberg, 2015 | MR | Zbl

[4] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Information Theory., 22 (1976), 644–654 | DOI | MR | Zbl

[5] ElGamal T., “A public key cryptosystem and a signature scheme based on discrete logarithms”, Lect. Notes Comp. Sci., 196 (1985), 10–18 | DOI | MR | Zbl

[6] Inassaridze N., Kandelaki T., Ladra M., “Categorical interpretations of some key agreement protocols”, J. Math. Sci., 195:4 (2013), 439–444 | DOI | MR | Zbl

[7] Itakura K., Nakamura K., “A public-key cryptosystem suitable for digital multi-signatures”, Trans. Inform. Process. Soc. Jpn., 24:2 (1983), 474–480

[8] Lang S., Algebra, Springer-Verlag, New York–Berlin–Heidelberg, 2002 | Zbl

[9] MacLane S., Categories for the Working Mathematician, Springer-Verlag, New York–Berlin–Heidelberg, 1978 | MR

[10] Merkle R. C., “A certified digital signature”, Lect. Notes Comput. Sci., 435 (1989), 218–238 | DOI | MR

[11] Micali S., Ohta K., Reyzin L., “Accountable subgroup multisignatures”, Proc. 8th ACM Conf. on Computer and Communications Security, ACM, New York, 2001, 245–254

[12] Pavlovic D., “Chasing diagrams in cryptography”, Lect. Notes Comput. Sci., 8222 (2014), 353–367 | DOI | MR | Zbl

[13] Rabin M. O., “Digitalized signatures”, Foundations of Secure Communication, Academic Press, 1978, 155–168 | MR

[14] Rivest R. L., Shamir A., Adleman L., “A method for obtaining digital signatures and public-key cryptosystems”, Commun. ACM., 21:2 (1978), 120–126 | DOI | MR | Zbl

[15] Rompel J., “One-way functions are necessary and sufficient for secure signatures”, Proc. ACM STOC’90, 1990, 387–394

[16] Sakalauskas E., “Enhanced matrix power function for cryptographic primitive construction”, Symmetry., 10:2 (2018), 43 | DOI | Zbl

[17] Yanai N., Chida E., Mambo M., “A secure structured multisignature scheme based on a non-commutative ring homomorphism”, IEICE Trans. Fundam., E94-A:6 (2011), 54–60