Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_177_a8, author = {N. Inassaridze and M. Khazaradze and \`E. V. Khmaladze and B. Mesablishvili}, title = {On one-way ring homomorphisms}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {80--86}, publisher = {mathdoc}, volume = {177}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/} }
TY - JOUR AU - N. Inassaridze AU - M. Khazaradze AU - È. V. Khmaladze AU - B. Mesablishvili TI - On one-way ring homomorphisms JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 80 EP - 86 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/ LA - ru ID - INTO_2020_177_a8 ER -
%0 Journal Article %A N. Inassaridze %A M. Khazaradze %A È. V. Khmaladze %A B. Mesablishvili %T On one-way ring homomorphisms %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 80-86 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/ %G ru %F INTO_2020_177_a8
N. Inassaridze; M. Khazaradze; È. V. Khmaladze; B. Mesablishvili. On one-way ring homomorphisms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 80-86. http://geodesic.mathdoc.fr/item/INTO_2020_177_a8/
[1] Anshel I., Anshel M., Goldfeld D., “An algebraic method for public-key cryptography”, Math. Res. Lett., 6 (1999), 287–291 | DOI | MR | Zbl
[2] Chida E., Nishizeki T., Ohmori M., Shizuva H., “On the one-way algebraic homomorphism”, IEICE Trans. Fundam., E79-A:1 (1996), 54–60
[3] Delfs H., Knebl H., Introduction to Cryptography. Principles and Applications, Springer-Verlag, Berlin–Heidelberg, 2015 | MR | Zbl
[4] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Information Theory., 22 (1976), 644–654 | DOI | MR | Zbl
[5] ElGamal T., “A public key cryptosystem and a signature scheme based on discrete logarithms”, Lect. Notes Comp. Sci., 196 (1985), 10–18 | DOI | MR | Zbl
[6] Inassaridze N., Kandelaki T., Ladra M., “Categorical interpretations of some key agreement protocols”, J. Math. Sci., 195:4 (2013), 439–444 | DOI | MR | Zbl
[7] Itakura K., Nakamura K., “A public-key cryptosystem suitable for digital multi-signatures”, Trans. Inform. Process. Soc. Jpn., 24:2 (1983), 474–480
[8] Lang S., Algebra, Springer-Verlag, New York–Berlin–Heidelberg, 2002 | Zbl
[9] MacLane S., Categories for the Working Mathematician, Springer-Verlag, New York–Berlin–Heidelberg, 1978 | MR
[10] Merkle R. C., “A certified digital signature”, Lect. Notes Comput. Sci., 435 (1989), 218–238 | DOI | MR
[11] Micali S., Ohta K., Reyzin L., “Accountable subgroup multisignatures”, Proc. 8th ACM Conf. on Computer and Communications Security, ACM, New York, 2001, 245–254
[12] Pavlovic D., “Chasing diagrams in cryptography”, Lect. Notes Comput. Sci., 8222 (2014), 353–367 | DOI | MR | Zbl
[13] Rabin M. O., “Digitalized signatures”, Foundations of Secure Communication, Academic Press, 1978, 155–168 | MR
[14] Rivest R. L., Shamir A., Adleman L., “A method for obtaining digital signatures and public-key cryptosystems”, Commun. ACM., 21:2 (1978), 120–126 | DOI | MR | Zbl
[15] Rompel J., “One-way functions are necessary and sufficient for secure signatures”, Proc. ACM STOC’90, 1990, 387–394
[16] Sakalauskas E., “Enhanced matrix power function for cryptographic primitive construction”, Symmetry., 10:2 (2018), 43 | DOI | Zbl
[17] Yanai N., Chida E., Mambo M., “A secure structured multisignature scheme based on a non-commutative ring homomorphism”, IEICE Trans. Fundam., E94-A:6 (2011), 54–60