On the number of Heisenberg characters of finite groups
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 24-33
Voir la notice de l'article provenant de la source Math-Net.Ru
An irreducible character $\chi$ of a finite group $G$ is called a Heisenberg character if $\ker \chi \supseteq [G, [G, G]]$. In this paper, we prove that the group $G$ has exactly $r$, $r \leq 3$, Heisenberg characters if and only if $|{G}/{G'}|=r$. If $G$ has exactly four Heisenberg characters, then $|{G}/{G'}|=4$, but the converse is not correct in general. Finally, it is proved that if $G$ has exactly five Heisenberg characters, then $|{G}/{G'}|=5$ or $|{G}/{G'}|=4$ and one of the Heisenberg characters of $G$ has the degree $2$.
Keywords:
irreducible character, Heisenberg character, finite group.
@article{INTO_2020_177_a2,
author = {A. Zolfi and A. R. Ashrafi},
title = {On the number of {Heisenberg} characters of finite groups},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {24--33},
publisher = {mathdoc},
volume = {177},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/}
}
TY - JOUR AU - A. Zolfi AU - A. R. Ashrafi TI - On the number of Heisenberg characters of finite groups JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 24 EP - 33 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/ LA - ru ID - INTO_2020_177_a2 ER -
%0 Journal Article %A A. Zolfi %A A. R. Ashrafi %T On the number of Heisenberg characters of finite groups %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 24-33 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/ %G ru %F INTO_2020_177_a2
A. Zolfi; A. R. Ashrafi. On the number of Heisenberg characters of finite groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 24-33. http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/