On the number of Heisenberg characters of finite groups
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 24-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

An irreducible character $\chi$ of a finite group $G$ is called a Heisenberg character if $\ker \chi \supseteq [G, [G, G]]$. In this paper, we prove that the group $G$ has exactly $r$, $r \leq 3$, Heisenberg characters if and only if $|{G}/{G'}|=r$. If $G$ has exactly four Heisenberg characters, then $|{G}/{G'}|=4$, but the converse is not correct in general. Finally, it is proved that if $G$ has exactly five Heisenberg characters, then $|{G}/{G'}|=5$ or $|{G}/{G'}|=4$ and one of the Heisenberg characters of $G$ has the degree $2$.
Keywords: irreducible character, Heisenberg character, finite group.
@article{INTO_2020_177_a2,
     author = {A. Zolfi and A. R. Ashrafi},
     title = {On the number of {Heisenberg} characters of finite groups},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {24--33},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/}
}
TY  - JOUR
AU  - A. Zolfi
AU  - A. R. Ashrafi
TI  - On the number of Heisenberg characters of finite groups
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 24
EP  - 33
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/
LA  - ru
ID  - INTO_2020_177_a2
ER  - 
%0 Journal Article
%A A. Zolfi
%A A. R. Ashrafi
%T On the number of Heisenberg characters of finite groups
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 24-33
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/
%G ru
%F INTO_2020_177_a2
A. Zolfi; A. R. Ashrafi. On the number of Heisenberg characters of finite groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 24-33. http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/

[2] Brodlie A., “The representation theory of the Heisenberg group and beyond”, XI Int. Conf. “Symmetry Methods in Physics” (Prague, Czech Republic, June 21-24, 2004)

[3] Darafsheh M. R. and Misaghian M. M., “On the ordinary irreducible characters of the Heisenberg group and a similar special group”, Algebra Colloq., 15:3 (2008), 471–478 | DOI | MR | Zbl

[4] Darafsheh M. R. and Poursalavati N. S., “On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups”, SUT J. Math., 37:1 (2001), 1–17 | MR | Zbl

[5] Hegyvari N. and Hennecart F., “A note on Freiman models in Heisenberg group”, Israel J. Math., 2012, no. 189, 397–411 | DOI | MR | Zbl

[6] Hormozi M. and Rodtes K., “Symmetry classes of tensors associated with the semi-dihedral groups $SD_{8n}$”, Colloq. Math., 131:1 (2013), 59–67 | DOI | MR | Zbl

[7] Isaacs I. M., Character Theory of Finite Groups, Am. Math. Soc., Providence, Rhode Island, RI, 2006 | MR

[8] James G. and Liebeck M., Representations and Characters of Groups, Cambridge Univ. Press, London, New York, 1993 | MR | Zbl

[9] Lopez A. V. and Lopez J. V., “Classification of finite groups according to the number of conjugacy classes”, Israel J. Math., 51:4 (1985), 305–338 | DOI | MR | Zbl

[10] Marberg E., “Heisenberg characters, unitriangular groups, and Fibonacci numbers”, J. Combib. Theory, Ser. A., 119 (2012), 882–903 | DOI | MR | Zbl

[11] Misaghian M., “The representations of the Heisenberg group over a finite field”, Arm. J. Math., 3:4 (2010), 162–173 | MR

[12] Seitz G., “Finite groups having only one irreducible representation of degree greater than one”, Proc. Am. Math. Soc., 19 (1968), 459–461 | DOI | MR | Zbl