Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_177_a2, author = {A. Zolfi and A. R. Ashrafi}, title = {On the number of {Heisenberg} characters of finite groups}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {24--33}, publisher = {mathdoc}, volume = {177}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/} }
TY - JOUR AU - A. Zolfi AU - A. R. Ashrafi TI - On the number of Heisenberg characters of finite groups JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 24 EP - 33 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/ LA - ru ID - INTO_2020_177_a2 ER -
%0 Journal Article %A A. Zolfi %A A. R. Ashrafi %T On the number of Heisenberg characters of finite groups %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 24-33 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/ %G ru %F INTO_2020_177_a2
A. Zolfi; A. R. Ashrafi. On the number of Heisenberg characters of finite groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 24-33. http://geodesic.mathdoc.fr/item/INTO_2020_177_a2/
[2] Brodlie A., “The representation theory of the Heisenberg group and beyond”, XI Int. Conf. “Symmetry Methods in Physics” (Prague, Czech Republic, June 21-24, 2004)
[3] Darafsheh M. R. and Misaghian M. M., “On the ordinary irreducible characters of the Heisenberg group and a similar special group”, Algebra Colloq., 15:3 (2008), 471–478 | DOI | MR | Zbl
[4] Darafsheh M. R. and Poursalavati N. S., “On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups”, SUT J. Math., 37:1 (2001), 1–17 | MR | Zbl
[5] Hegyvari N. and Hennecart F., “A note on Freiman models in Heisenberg group”, Israel J. Math., 2012, no. 189, 397–411 | DOI | MR | Zbl
[6] Hormozi M. and Rodtes K., “Symmetry classes of tensors associated with the semi-dihedral groups $SD_{8n}$”, Colloq. Math., 131:1 (2013), 59–67 | DOI | MR | Zbl
[7] Isaacs I. M., Character Theory of Finite Groups, Am. Math. Soc., Providence, Rhode Island, RI, 2006 | MR
[8] James G. and Liebeck M., Representations and Characters of Groups, Cambridge Univ. Press, London, New York, 1993 | MR | Zbl
[9] Lopez A. V. and Lopez J. V., “Classification of finite groups according to the number of conjugacy classes”, Israel J. Math., 51:4 (1985), 305–338 | DOI | MR | Zbl
[10] Marberg E., “Heisenberg characters, unitriangular groups, and Fibonacci numbers”, J. Combib. Theory, Ser. A., 119 (2012), 882–903 | DOI | MR | Zbl
[11] Misaghian M., “The representations of the Heisenberg group over a finite field”, Arm. J. Math., 3:4 (2010), 162–173 | MR
[12] Seitz G., “Finite groups having only one irreducible representation of degree greater than one”, Proc. Am. Math. Soc., 19 (1968), 459–461 | DOI | MR | Zbl