Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_177_a13, author = {H. B. Shelash and A. R. Ashrafi}, title = {Wielandt subgroups of certain finite groups}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {121--131}, publisher = {mathdoc}, volume = {177}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a13/} }
TY - JOUR AU - H. B. Shelash AU - A. R. Ashrafi TI - Wielandt subgroups of certain finite groups JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 121 EP - 131 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a13/ LA - ru ID - INTO_2020_177_a13 ER -
%0 Journal Article %A H. B. Shelash %A A. R. Ashrafi %T Wielandt subgroups of certain finite groups %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 121-131 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a13/ %G ru %F INTO_2020_177_a13
H. B. Shelash; A. R. Ashrafi. Wielandt subgroups of certain finite groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 121-131. http://geodesic.mathdoc.fr/item/INTO_2020_177_a13/
[1] Abbaspour M. H., Behravesh H., “Quasi-permutation representations of $2-$groups satisfying the Hasse principle”, Ric. Math., 59 (2010), 49–57 | DOI | MR | Zbl
[2] Ballester-Bolinches A., Esteban-Romero R., “On finite $T-$groups”, J. Austr. Math. Soc., 75:2 (2003), 181–191 | DOI | MR | Zbl
[3] Bianchi M., Gillio Berta Mauri A., Herzog M., Verardi L., “On finite solvable groups in which normality is a transitive relation”, J. Group Theory., 3:2 (2000), 147–156 | DOI | MR | Zbl
[4] Cavior S. R., “The subgroups of the dihedral groups”, Math. Mag., 48 (1975), 107 | DOI | MR | Zbl
[5] Chin A., Newell P., “A charecterization of higher order Wielandt subgroups and some application”, Missouri J. Math. Sci., 21:3 (2009), 206–209 | DOI | MR | Zbl
[6] Darafsheh M. R., Poursalavati N. S., “On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups”, SUT J. Math., 37:1 (2001), 1–17 | MR | Zbl
[7] James G., Liebeck M., Representations and characters of groups, Cambridge Univ. Press, New York, 2001 | MR | Zbl
[8] Kurzweil H., Stellmacher B., The theory of finite groups: An introduction, Springer-Verlag, New York, 2004 | MR | Zbl
[9] Müller K. H., “Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen”, Rend. Sem. Mat. Univ. Padova, 36 (1966), 129–157 | MR | Zbl
[10] Robinson D. J. S., “A note on finite groups in which normality is transitive”, Proc. Am. Math. Soc., 19 (1968), 933–937 | DOI | MR | Zbl
[11] Shelash H. B., Ashrafi A. R., “Computing maximal and minimal subgroups with respect to a given property in certain finite groups”, Quasigroups Rel. Syst., 27:1 (2019), 133–146 | MR | Zbl
[12] Tărnăuceanu M., Contributions to the study of subgroup lattices, Matrix Rom, Bucharest, 2016 | MR
[13] “The GAP Team”, GAP – Groups, Algorithms, and Programming, 2014, Version 4.7.5
[14] Wielandt H., “Eine Verallgemeinerung der invarianten Untergruppen”, Math. Z., 45 (1939), 209–244 | DOI | MR
[15] Wielandt H., “Über den Normalisator der Subnormalen Untergruppen”, Math. Z., 69 (1958), 463–465 | DOI | MR | Zbl