Groups with finitely many isomorphic classes of relevant subgroups
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 102-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study groups possessing the following property: for some relevant families $\mathcal{M}$ of subgroups of $G$, subgroups from $\mathcal{M}$ fall into finitely many isomorphic classes.
Keywords: radical group, family of subgroups, normal subgroup, Dedekind group
Mots-clés : Chernikov group.
@article{INTO_2020_177_a11,
     author = {L. A. Kurdachenko and P. Longobardi and M. Maj},
     title = {Groups with finitely many isomorphic classes of relevant subgroups},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a11/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - P. Longobardi
AU  - M. Maj
TI  - Groups with finitely many isomorphic classes of relevant subgroups
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 102
EP  - 110
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a11/
LA  - ru
ID  - INTO_2020_177_a11
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A P. Longobardi
%A M. Maj
%T Groups with finitely many isomorphic classes of relevant subgroups
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 102-110
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a11/
%G ru
%F INTO_2020_177_a11
L. A. Kurdachenko; P. Longobardi; M. Maj. Groups with finitely many isomorphic classes of relevant subgroups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 102-110. http://geodesic.mathdoc.fr/item/INTO_2020_177_a11/

[1] Zaitsev D. I., Kurdachenko L. A., “Gruppy s usloviem maksimalnosti na neabelevykh podgruppakh”, Ukr. mat. zh., 43:7–8 (1991), 925–930

[2] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR

[3] Kurdachenko L. A., Kuzennyi N. F., Semko N. N., “Gruppy s nekotorymi usloviyami maksimalnosti”, Izv. AN USSR. Ser. A., 1 (1998), 9–11

[4] A. Yu. Olshanskii, “Beskonechnaya prostaya nëterova gruppa bez krucheniya”, Izv. AN SSSR. Ser. mat., 43:6 (1979), 1328–1393 | MR | Zbl

[5] A. Yu. Olshanskii, “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika., 21:5 (1982), 369–418

[6] Chernikov S. N., “Beskonechnye gruppy s nekotorymi zadannymi svoistvami sistem ikh beskonechnykh podgrupp”, Dokl. AN SSSR., 159 (1964), 759–760 | Zbl

[7] Chernikov S. N., “Gruppy s zadannymi svoistvami sistem beskonechnykh podgrupp”, Ukr. mat. zh., 19:6 (1967), 111–131 | MR

[8] Chernikov S. N., “Issledovanie grupp s zadannymi svoistvami podgrupp”, Ukr. mat. zh., 21:2 (1969), 193–209 | Zbl

[9] Shmidt O. Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31 (1924), 366–372 | Zbl

[10] Shunkov V. P., “O probleme minimalnosti dlya lokalno konechnykh grupp”, Algebra i logika., 9 (1970), 220–248 | Zbl

[11] Shunkov V. P., “O lokalno konechnykh gruppakh s usloviem minimalnosti dlya abelevykh podgrupp”, Algebra i logika., 9 (1970), 579–615

[12] Asar A. O., “Locally nilpotent $p$-groups whose proper subgroups are hypercentral or nilpotent-by-Černikov”, J. London Math. Soc., 61 (2000), 412–422 | DOI | MR | Zbl

[13] Baer R., “Situation der Untergruppen und Struktur der Gruppe”, Sitzgsber. Heidelberg. Akad. Wiss., 2 (1933), 12–17

[14] Cutolo G., “On groups satisfying the maximal condition on non-normal subgroups”, Riv. Mat. Pura Appl., 91 (1991), 49–59 | MR

[15] Dedekind R., “Über Gruppen deren sammtliche Teiler Normalteiler sind”, Math. Ann., 48 (1897), 548–561 | DOI | MR | Zbl

[16] Dixon M. R., Kurdachenko L. A., “Locally nilpotent groups with the maximum condition on non-nilpotent subgroups”, Glasgow Math. J., 43:1 (2001), 85–102 | DOI | MR | Zbl

[17] Dixon M. R., Kurdachenko L. A., “Groups with the maximum condition on non-nilpotent subgroups”, J. Group Theory., 4:1 (2001), 75–87 | DOI | MR | Zbl

[18] Dixon M. R., Kurdachenko L. A., Subbotin I. Ya., Ranks of groups. The tools, characteristics and restrictions, Wiley, New York, 2017 | MR | Zbl

[19] Dixon M. R., Subbotin I. Ya., “Groups with finiteness conditions on some subgroup systems: a contemporary stage”, Alg. Discr. Math., 4 (2009), 29–54 | MR | Zbl

[20] Franciosi S., de Giovanni F., “Groups satisfying the minimal condition on non-subnormal subgroups”, Infinite groups (1994, Ravello), de Gruyter, Berlin, 1996, 63–72 | MR | Zbl

[21] Fuchs L., Infinite abelian groups, Academic Press, New York, 1970 | MR | Zbl

[22] de Giovanni F., Robinson D. J. S., “Groups with finitely many derived subgroups”, J. London Math. Soc., 71:2 (2005), 658–668 | DOI | MR | Zbl

[23] Hartley B., “A note on the normalizer condition”, Proc. Cambridge Phil. Soc., 74:1 (1973), 11–15 | DOI | MR | Zbl

[24] Heineken H., Mohamed I. J., “A group with trivial center satisfying the normalizer condition”, J. Algebra., 10 (1968), 368–376 | DOI | MR | Zbl

[25] Heineken H., Mohamed I. J., “Non-nilpotent groups with normalizer condition”, Lect. Notes Math., 372, 1974, 357–360 | DOI | MR | Zbl

[26] Hekster N. S., Lenstra H. W. Jr., “Groups with finitely many non-normal subgroups”, Arch. Math., 54 (1990), 225–231 | DOI | MR | Zbl

[27] Herzog M., Longobardi P., Maj M., “On the number of commutators in groups”, Ischia Group Theory (2004), Am. Math. Soc., Providence, Rhode Island, 2006, 181–192 | DOI | MR | Zbl

[28] Kurdachenko L. A., Longobardi P., Maj M., Subbotin I. Ya., “Groups with finitely many isomorphic classes of non-abelian subgroups”, J. Algebra., 507 (2018), 439–466 | DOI | MR | Zbl

[29] Kurdachenko L. A., Smith H., “Groups with the maximal condition on non-subnormal subgroups”, Boll. Unione Mat. Ital., 10B (1996), 441–460 | MR | Zbl

[30] Lennox J. C., Stonehewer S. E., Subnormal subgroups of groups, Clarendon Press, Oxford, 1987 | MR | Zbl

[31] Longobardi P., Maj M., Robinson D. J. S., “Locally finite groups with finitely many isomorphism classes of derived subgroups”, J. Algebra., 393 (2013), 102–119 | DOI | MR | Zbl

[32] Longobardi P., Maj M., Robinson D. J. S., “Recent results on groups with few isomorphism classes of derived subgroups”, Contemp. Math., 611 (2014), 121–135 | DOI | MR | Zbl

[33] Longobardi P., Maj M., Robinson D. J. S., Smith H., “On groups with two isomorphism classes of derived subgroups”, Glasgow Math. J., 55:3 (2013), 655–668 | DOI | MR | Zbl

[34] Menegazzo F., “Groups of Heineken–Mohamed”, J. Algebra., 171 (1995), 807–825 | DOI | MR | Zbl

[35] Miller G. A., Moreno H., “Non-abelian groups in which every subgroup is abelian”, Trans. Am. Math. Soc., 4 (1903), 389–404 | MR

[36] Möhres W., “Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind”, Arch. Math., 54 (1990), 232–235 | DOI | MR | Zbl

[37] Phillips R. E., Wilson J. S., “On certain minimal conditions for infinite groups”, J. Algebra., 51 (1978), 41–68 | DOI | MR | Zbl

[38] Robinson D. J. S., A course in the theory of groups, Springer, New York, 1982 | MR | Zbl

[39] Segal D., Polycyclic groups, Cambridge Univ. Press, Cambridge, 2005 | MR

[40] Smith H., “Groups with few non-nilpotent subgroups”, Glasgow Math. J., 39 (1997), 141–151 | DOI | MR | Zbl

[41] Smith H., Wiegold J., “Groups which are isomorphic to their non-abelian subgroups”, Rend. Sem. Mat. Univ. Padova., 97 (1997), 7–16 | MR | Zbl

[42] Tomkinson M. J., FC-groups, Pitman, Melbourne, 1984 | MR | Zbl