Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 10-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine geodesics and flat totally geodesic subalgebras in higher-step nilpotent metric Lie algebras of dimension $5$. It is surprising that in nonfiliform metric Lie algebras with one-dimensional center, the geodesic vectors and flat totally geodesic subalgebras are independent of the choice of the inner product.
Keywords: nilpotent metric Lie algebra, geodesic vector, nonfiliform metric Lie algebras, flat totally geodesic subalgebras, inner product.
@article{INTO_2020_177_a1,
     author = {A. Al-Abayechi and \'A. Figula},
     title = {Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric {Lie} algebras},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--23},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/}
}
TY  - JOUR
AU  - A. Al-Abayechi
AU  - Á. Figula
TI  - Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 10
EP  - 23
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/
LA  - ru
ID  - INTO_2020_177_a1
ER  - 
%0 Journal Article
%A A. Al-Abayechi
%A Á. Figula
%T Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 10-23
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/
%G ru
%F INTO_2020_177_a1
A. Al-Abayechi; Á. Figula. Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 10-23. http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/

[1] Cairns G., Hinić Galić A., Nikolayevsky Yu., “Totally geodesic subalgebras of nilpotent Lie algebras”, J. Lie Theory., 23 (2013), 1023–1049 | MR | Zbl

[2] Cairns G., Hinić Galić A., Nikolayevsky Yu., “Totally geodesic subalgebras of filiform nilpotent Lie algebras”, J. Lie Theory., 23 (2013), 1051–1074 | MR | Zbl

[3] Eberlein P., “Geometry of $2$-step nilpotent groups with a left invariant metric, II”, Trans. Am. Math. Soc., 343 (1994), 805–828 | MR | Zbl

[4] Figula Á., Nagy P. T., “Isometry classes of simply connected nilmanifolds”, J. Geom. Phys., 132, 370–381 | DOI | MR | Zbl

[5] de Graaf W. A., “Classification of $6$-dimensional nilpotent Lie algebras over fields of characteristic not $2$”, J. Algebra., 309 (2007), 640–653 | DOI | MR | Zbl

[6] Kerr M. M., Payne T. L., “The geometry of filiform nilpotent Lie groups”, Rocky Mountain J. Math., 40 (2010), 1587–1610 | DOI | MR | Zbl

[7] Lauret J., “Homogeneous nilmanifolds of dimension $3$ and $4$”, Geom. Dedicata., 68 (1997), 145–155 | DOI | MR | Zbl

[8] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl

[9] Nagy P. T., Homolya Sz., “Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras”, Adv. Geom., 15 (2015), 121–126 | DOI | MR | Zbl