Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_177_a1, author = {A. Al-Abayechi and \'A. Figula}, title = {Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric {Lie} algebras}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {10--23}, publisher = {mathdoc}, volume = {177}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/} }
TY - JOUR AU - A. Al-Abayechi AU - Á. Figula TI - Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 10 EP - 23 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/ LA - ru ID - INTO_2020_177_a1 ER -
%0 Journal Article %A A. Al-Abayechi %A Á. Figula %T Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 10-23 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/ %G ru %F INTO_2020_177_a1
A. Al-Abayechi; Á. Figula. Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 10-23. http://geodesic.mathdoc.fr/item/INTO_2020_177_a1/
[1] Cairns G., Hinić Galić A., Nikolayevsky Yu., “Totally geodesic subalgebras of nilpotent Lie algebras”, J. Lie Theory., 23 (2013), 1023–1049 | MR | Zbl
[2] Cairns G., Hinić Galić A., Nikolayevsky Yu., “Totally geodesic subalgebras of filiform nilpotent Lie algebras”, J. Lie Theory., 23 (2013), 1051–1074 | MR | Zbl
[3] Eberlein P., “Geometry of $2$-step nilpotent groups with a left invariant metric, II”, Trans. Am. Math. Soc., 343 (1994), 805–828 | MR | Zbl
[4] Figula Á., Nagy P. T., “Isometry classes of simply connected nilmanifolds”, J. Geom. Phys., 132, 370–381 | DOI | MR | Zbl
[5] de Graaf W. A., “Classification of $6$-dimensional nilpotent Lie algebras over fields of characteristic not $2$”, J. Algebra., 309 (2007), 640–653 | DOI | MR | Zbl
[6] Kerr M. M., Payne T. L., “The geometry of filiform nilpotent Lie groups”, Rocky Mountain J. Math., 40 (2010), 1587–1610 | DOI | MR | Zbl
[7] Lauret J., “Homogeneous nilmanifolds of dimension $3$ and $4$”, Geom. Dedicata., 68 (1997), 145–155 | DOI | MR | Zbl
[8] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl
[9] Nagy P. T., Homolya Sz., “Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras”, Adv. Geom., 15 (2015), 121–126 | DOI | MR | Zbl