Painlev\'e test and a self-similar solution of the kinetic model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a one-dimensional system of equations for a discrete gas model (McKean system). The McKean system is the Boltzmann kinetic equation of a model one-dimensional gas consisting of two groups of particles. Under certain conditions on a singularity variety, the system passes the Painlevé test. In addition, the kinetic system admits a reduction to a system of ordinary differential equations for which the Painlevé test is performed and it becomes possible to find a solution.
Keywords: Painlevé test, self-similar solution, McKean system.
@article{INTO_2020_176_a8,
     author = {S. A. Dukhnovskii},
     title = {Painlev\'e test and a self-similar solution of the kinetic model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Painlev\'e test and a self-similar solution of the kinetic model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 91
EP  - 94
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/
LA  - ru
ID  - INTO_2020_176_a8
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Painlev\'e test and a self-similar solution of the kinetic model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 91-94
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/
%G ru
%F INTO_2020_176_a8
S. A. Dukhnovskii. Painlev\'e test and a self-similar solution of the kinetic model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 91-94. http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/

[4] Vasileva O. A., Dukhnovskii S. A., Radkevich E. V., “O prirode lokalnogo ravnovesiya uravnenii Karlemana i Godunova—Sultangazina”, Sovr. mat. Fundam. napravl., 60 (2016), 23–81

[5] Vedenyapin V. V., Mingalev I. V., Mingalev O. V., “O diskretnykh modelyakh kvantovogo uravneniya Boltsmana”, Mat. sb., 184:11 (1993), 21–38 | Zbl

[6] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51 | MR | Zbl

[7] Dukhnovskii S. A. O skorosti stabilizatsii reshenii zadachi Koshi dlya uravneniya Karlemana s periodicheskimi nachalnymi dannymi, Vestn. Samar. tekhn. un-ta. Ser. Fiz.-mat. nauki., 21:1 (2017), 7–41 | DOI | Zbl

[8] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, teor. mat. fiz., 170:3 (2012), 481–488 | DOI

[9] Lindblom O., Eiler N., “Reshenie uravnenii Boltsmana dlya diskretnykh skorostei pri pomoschi uravnenii Beitmena i Rikkati”, Teor. mat. fiz., 131,:2 (2002), 522–526

[10] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005

[11] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373 | MR | Zbl

[12] Radkevich E. V., “O povedenii na bolshikh vremenakh reshenii zadachi Koshi dlya dvumernogo kineticheskogo uravneniya”, Sovr. mat. Fundam. napr., 47 (2013), 108–139

[13] Cabannes H., Dang Hong Tiem, “Exact solutions for some discrete models of the Boltzmann equation”, Complex Systems., 1:4 (1987), 575–584 | MR | Zbl

[14] Cornille H., “Exact $(2+1)$-dimensional solutions for two discrete velocity Boltzmann models with four independent densities”, J. Phys. A: Math. Gen., 20:16 (1987), 1063–1067 | DOI | MR

[15] Cornille H., “Exact $(1+1)$-dimensional solutions of discrete planar velocity Boltzmann models”, J. Stat. Phys., 48 (1987), 789–811 | DOI | MR | Zbl

[16] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015) | DOI | MR | Zbl

[17] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl