Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_176_a8, author = {S. A. Dukhnovskii}, title = {Painlev\'e test and a self-similar solution of the kinetic model}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {91--94}, publisher = {mathdoc}, volume = {176}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/} }
TY - JOUR AU - S. A. Dukhnovskii TI - Painlev\'e test and a self-similar solution of the kinetic model JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 91 EP - 94 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/ LA - ru ID - INTO_2020_176_a8 ER -
%0 Journal Article %A S. A. Dukhnovskii %T Painlev\'e test and a self-similar solution of the kinetic model %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 91-94 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/ %G ru %F INTO_2020_176_a8
S. A. Dukhnovskii. Painlev\'e test and a self-similar solution of the kinetic model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 91-94. http://geodesic.mathdoc.fr/item/INTO_2020_176_a8/
[4] Vasileva O. A., Dukhnovskii S. A., Radkevich E. V., “O prirode lokalnogo ravnovesiya uravnenii Karlemana i Godunova—Sultangazina”, Sovr. mat. Fundam. napravl., 60 (2016), 23–81
[5] Vedenyapin V. V., Mingalev I. V., Mingalev O. V., “O diskretnykh modelyakh kvantovogo uravneniya Boltsmana”, Mat. sb., 184:11 (1993), 21–38 | Zbl
[6] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51 | MR | Zbl
[7] Dukhnovskii S. A. O skorosti stabilizatsii reshenii zadachi Koshi dlya uravneniya Karlemana s periodicheskimi nachalnymi dannymi, Vestn. Samar. tekhn. un-ta. Ser. Fiz.-mat. nauki., 21:1 (2017), 7–41 | DOI | Zbl
[8] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, teor. mat. fiz., 170:3 (2012), 481–488 | DOI
[9] Lindblom O., Eiler N., “Reshenie uravnenii Boltsmana dlya diskretnykh skorostei pri pomoschi uravnenii Beitmena i Rikkati”, Teor. mat. fiz., 131,:2 (2002), 522–526
[10] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005
[11] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373 | MR | Zbl
[12] Radkevich E. V., “O povedenii na bolshikh vremenakh reshenii zadachi Koshi dlya dvumernogo kineticheskogo uravneniya”, Sovr. mat. Fundam. napr., 47 (2013), 108–139
[13] Cabannes H., Dang Hong Tiem, “Exact solutions for some discrete models of the Boltzmann equation”, Complex Systems., 1:4 (1987), 575–584 | MR | Zbl
[14] Cornille H., “Exact $(2+1)$-dimensional solutions for two discrete velocity Boltzmann models with four independent densities”, J. Phys. A: Math. Gen., 20:16 (1987), 1063–1067 | DOI | MR
[15] Cornille H., “Exact $(1+1)$-dimensional solutions of discrete planar velocity Boltzmann models”, J. Stat. Phys., 48 (1987), 789–811 | DOI | MR | Zbl
[16] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015) | DOI | MR | Zbl
[17] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl