Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_176_a7, author = {Yu. R. Agachev and A. V. Guskova}, title = {Generalized polynomial method for solving a {Cauchy-type} problem for one fractional differential equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {80--90}, publisher = {mathdoc}, volume = {176}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a7/} }
TY - JOUR AU - Yu. R. Agachev AU - A. V. Guskova TI - Generalized polynomial method for solving a Cauchy-type problem for one fractional differential equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 80 EP - 90 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a7/ LA - ru ID - INTO_2020_176_a7 ER -
%0 Journal Article %A Yu. R. Agachev %A A. V. Guskova %T Generalized polynomial method for solving a Cauchy-type problem for one fractional differential equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 80-90 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a7/ %G ru %F INTO_2020_176_a7
Yu. R. Agachev; A. V. Guskova. Generalized polynomial method for solving a Cauchy-type problem for one fractional differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 80-90. http://geodesic.mathdoc.fr/item/INTO_2020_176_a7/
[1] Agachev Yu. R., Lipachev E. K., Pryamye polinomialnye i splainovye metody resheniya integralnykh uravnenii vtorogo roda, Kazan, 2017
[2] Butkovskii A. G, Postnov S. S., Postnova E. A., “Drobnoe integro-differentsialnoe ischislenie i ego prilozheniya v teorii upravleniya”, Avtomat. telemekh., 2013, no. 4, 3–42 | Zbl
[3] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980 | MR
[4] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov”, Izv. vuzov. Mat., 1968, no. 2
[5] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977
[6] Lyusternik L. A, Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR
[7] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.-L., 1949 | MR
[8] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[10] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962
[11] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[12] Pollard H., “The mean convergence of orthogonal series”, Duke Math. J., 16:1 (1949) | DOI | MR | Zbl