Analogs of the P\'olya--Szeg\H{o} and Macai inequalities for the Euclidean moment of inertia of a convex domain
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain two-sided estimates for the Euclidean moment of inertia $\mathrm{I}_{2}(G) $ of a convex domain $G$ on the plane in terms of geometric characteristics of this domain similar to the Pólya–Szegő and Makai inequalities for the torsional rigidity.
Keywords: torsional rigidity, Euclidean moment of a domian relative to the boundary, isoperimetric inequality, distance function, boundary of a domain
Mots-clés : convex domain.
@article{INTO_2020_176_a6,
     author = {L. I. Gafiyatullina},
     title = {Analogs of the {P\'olya--Szeg\H{o}} and {Macai} inequalities for the {Euclidean} moment of inertia of a convex domain},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--79},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a6/}
}
TY  - JOUR
AU  - L. I. Gafiyatullina
TI  - Analogs of the P\'olya--Szeg\H{o} and Macai inequalities for the Euclidean moment of inertia of a convex domain
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 70
EP  - 79
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a6/
LA  - ru
ID  - INTO_2020_176_a6
ER  - 
%0 Journal Article
%A L. I. Gafiyatullina
%T Analogs of the P\'olya--Szeg\H{o} and Macai inequalities for the Euclidean moment of inertia of a convex domain
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 70-79
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a6/
%G ru
%F INTO_2020_176_a6
L. I. Gafiyatullina. Analogs of the P\'olya--Szeg\H{o} and Macai inequalities for the Euclidean moment of inertia of a convex domain. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 70-79. http://geodesic.mathdoc.fr/item/INTO_2020_176_a6/

[1] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazan, 1996

[2] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Mat. sb., 189:12 (1998), 3–12 | DOI | MR | Zbl

[3] Avkhadiev F. G., Neravenstva dlya integralnykh kharakteristik oblastei, Kazansk. gos. un-t im. V. I. Ulyanova-Lenina, Kazan, 2006

[4] Avkhadiev F. G., Vvedenie v geometricheskuyu teoriyu funktsii, Kazan. un-t, Kazan, 2012

[5] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[6] Salakhudinov R. G., “Izoperimetricheskie svoistva evklidovykh granichnykh momentov odnosvyaznoi oblasti”, Izv. vuzov. Mat., 2013, no. 8, 66–79 | MR | Zbl

[7] Makai E., “Bounds for the principal frequency of a membrane and the torsional rigidity of a beam”, Acta Sci. Math., 20 (1959), 33–35 | MR | Zbl

[8] Makai E., “On the principal frequency of a convex membrane and related problems”, Czech. Math. J., 9 (1959), 66–70 | MR | Zbl

[9] Payne L. E., “Isoperimetric inequalities and their applications”, SIAM Rev., 9:3 (1967), 453–488 | DOI | MR | Zbl

[10] Salahudinov R. G., “An isoperimetric inequality for torsional rigidity in the complex plane”, J. Ineq. Appl., 6 (2001), 253–260 | MR | Zbl