Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_176_a5, author = {A. A. Petrova}, title = {Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {61--69}, publisher = {mathdoc}, volume = {176}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/} }
TY - JOUR AU - A. A. Petrova TI - Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 61 EP - 69 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/ LA - ru ID - INTO_2020_176_a5 ER -
%0 Journal Article %A A. A. Petrova %T Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 61-69 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/ %G ru %F INTO_2020_176_a5
A. A. Petrova. Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 61-69. http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/