Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 61-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the projection-difference method and the implicit Euler method in time. The approximation of the problem with respect to spatial variables is oriented to the finite element method in the case of arbitrary projection subspaces under an additional smoothness condition. Estimates of errors of approximate solutions are established, the convergence of approximate solutions to the exact solution is proved, and the convergence rate is estimated.
Keywords: Hilbert space, nonlocal weighted integral condition, projection-difference method
Mots-clés : parabolic equation, implicit Euler method.
@article{INTO_2020_176_a5,
     author = {A. A. Petrova},
     title = {Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/}
}
TY  - JOUR
AU  - A. A. Petrova
TI  - Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 61
EP  - 69
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/
LA  - ru
ID  - INTO_2020_176_a5
ER  - 
%0 Journal Article
%A A. A. Petrova
%T Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 61-69
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/
%G ru
%F INTO_2020_176_a5
A. A. Petrova. Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 61-69. http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/

[1] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differ. uravn., 11:7 (1975), 1269–1277 | MR | Zbl

[2] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[3] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[4] Oben Zh. P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977

[5] Petrova A. A., “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Differ. uravn., 54:7 (2018), 975–987 | DOI | MR | Zbl

[6] Petrova A. A., Smagin V. V., “Razreshimost variatsionnoi zadachi parabolicheskogo tipa s vesovym integralnym usloviem”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2014, no. 4, 160–169 | Zbl

[7] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987

[8] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Mat. sb., 188:3 (1997), 143–160 | DOI | MR

[9] Smagin V. V., “Energeticheskaya skhodimost pogreshnosti proektsionno-raznostnogo metoda dlya slabo razreshimykh parabolicheskikh uravnenii”, Tr. mat. f-ta Voronezh. gos. un-ta., 1999, no. 4, 114–119

[10] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differ. uravn., 37:1 (2001), 115–123 | MR | Zbl

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980