Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_176_a5, author = {A. A. Petrova}, title = {Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {61--69}, publisher = {mathdoc}, volume = {176}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/} }
TY - JOUR AU - A. A. Petrova TI - Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 61 EP - 69 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/ LA - ru ID - INTO_2020_176_a5 ER -
%0 Journal Article %A A. A. Petrova %T Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 61-69 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/ %G ru %F INTO_2020_176_a5
A. A. Petrova. Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 61-69. http://geodesic.mathdoc.fr/item/INTO_2020_176_a5/
[1] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differ. uravn., 11:7 (1975), 1269–1277 | MR | Zbl
[2] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[3] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[4] Oben Zh. P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977
[5] Petrova A. A., “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Differ. uravn., 54:7 (2018), 975–987 | DOI | MR | Zbl
[6] Petrova A. A., Smagin V. V., “Razreshimost variatsionnoi zadachi parabolicheskogo tipa s vesovym integralnym usloviem”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2014, no. 4, 160–169 | Zbl
[7] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987
[8] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Mat. sb., 188:3 (1997), 143–160 | DOI | MR
[9] Smagin V. V., “Energeticheskaya skhodimost pogreshnosti proektsionno-raznostnogo metoda dlya slabo razreshimykh parabolicheskikh uravnenii”, Tr. mat. f-ta Voronezh. gos. un-ta., 1999, no. 4, 114–119
[10] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differ. uravn., 37:1 (2001), 115–123 | MR | Zbl
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980