Integration over nonrectifiable curves as a distribution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 50-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results related to the generalization of the concept of a curvilinear integral to nonrectifiable curves, Marcinkiewicz exponents, new metric characteristics introduced by the author, and their applications.
Keywords: integration, Marcinkiewicz exponents, metric characteristics
Mots-clés : non-rectifiable curve, fractal.
@article{INTO_2020_176_a4,
     author = {D. B. Kats},
     title = {Integration over nonrectifiable curves as a distribution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/}
}
TY  - JOUR
AU  - D. B. Kats
TI  - Integration over nonrectifiable curves as a distribution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 50
EP  - 60
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/
LA  - ru
ID  - INTO_2020_176_a4
ER  - 
%0 Journal Article
%A D. B. Kats
%T Integration over nonrectifiable curves as a distribution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 50-60
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/
%G ru
%F INTO_2020_176_a4
D. B. Kats. Integration over nonrectifiable curves as a distribution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 50-60. http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/

[1] Vekua I. N., Obobschennye analiticheskie fuktsii, Nauka, M., 1988

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[3] Kats B. A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izv. vuzov. Mat., 1983, no. 4, 68–80 | Zbl

[4] Kats B. A., “Zadacha Rimana na razomknutoi zhordanovoi krivoi”, Izv. vuzov. Mat., 1983, no. 12, 30–38 | Zbl

[5] Kats B. A., Kats D. B., “Integrirovanie po nespryamlyaemym dugam i ego prilozheniya”, Sib. mat. zh., 60:1 (2019), 95–108 | MR | Zbl

[6] Kats D. B., “Lokalnye pokazateli Martsinkevicha i ikh prilozhenie”, Uch. zap. Kazan. un-ta., 156:4 (2014), 31–38 | MR | Zbl

[7] Kats D. B., “Pokazateli Martsinkevicha i ikh prilozheniya v kraevykh zadachakh”, Izv. vuzov. Mat., 2014, no. 3, 68–71 | Zbl

[8] Kats D. B., Kats B. A., “Integralnye predstavleniya reshenii nekotorykh uravnenii Beltrami”, Izv. vuzov. Mat., 2018, no. 3, 23–28 | Zbl

[9] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-Entropiya i emkost mnozhestv v funktsionalnykh prostranstvakh”, Usp. mat. nauk., 14 (1959), 3–86 | MR | Zbl

[10] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977

[11] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1962 | MR

[12] Polozhii G. N., “Teoriya i primenenie $p$-analiticheskikh i $(p, q)$-analiticheskikh funktsii”, Obobschenie teorii analiticheskikh funktsii kompleksnogo peremennogo, Naukova Dumka, Kiev, 1973 | Zbl

[13] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[14] Tungatarov A. B., “Svoistva odnogo integralnogo operatora v klassakh summiruemykh funktsii”, Izv. AN Kaz. SSR. Ser. fiz.-mat., 132:5 (1985), 58–62 | MR

[15] Tungatarov A. B., “O prilozhenii nekotorykh integralnykh operatorov v teorii obobschennykh analiticheskikh funktsii”, Izv. AN Kaz. SSR. Ser. fiz.-mat., 134:1 (1987), 51–54 | MR | Zbl

[16] Abreu-Blaya R., Bory-Reyes J., Kats B. A., “Integration over non-rectifiable curves and Riemann boundary-value problems”, J. Math. Anal. Appl., 380:1 (2011), 177–187 | DOI | MR | Zbl

[17] Abreu-Blaya R., Bory-Reyes J., Pena-Pena D., “On the jump problem for $\beta$-analytic functions”, Compl. Var. Ellipt. Equations., 51:8-–11 (2006), 763-–775 | DOI | MR | Zbl

[18] Abreu-Blaya R., Bory-Reyes J., Vilaire J. M., “A jump problem for $\beta$-analytic functions in domains with fractal boundaries”, Rev. Mat. Compl., 23 (2010), 105-–111 | DOI | MR | Zbl

[19] Abreu-Blaya R., Bory-Reyes J., Vilaire J. M., “The Riemann boundary-value problem for $\beta$-analytic functions over $D$-summable closed curves”, Int. J. Pure Appl. Math., 75:4 (2012), 441–453

[20] Falconer K. J., Fractal geometry, Wiley, Chichester, 2014 | MR | Zbl

[21] Harrison J., Norton A., “The Gauss–Green theorem for fractal boundaries”, Duke Math. J., 67 (3) (1992), 575–588 | DOI | MR | Zbl

[22] Kats B. A., “The Riemann boundary-value problem on non-rectifiable curves and related questions”, Compl. Var. Ellipt. Equations., 59:8 (2014), 1053–1069 | DOI | MR | Zbl

[23] Katz D. B., “Riemann boundary-value problem on nonrectifiable curves for certain Beltrami equations”, Math. Meth. Appl. Sci., 2018, no. 41, 2507–2514 | MR | Zbl

[24] Potts D. H., “A note on Green's theorem”, J. London Math. Soc., 26 (1951), 302–304 | DOI | MR | Zbl