Integration over nonrectifiable curves as a distribution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 50-60
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a review of results related to the generalization of the concept of a curvilinear integral to nonrectifiable curves, Marcinkiewicz exponents, new metric characteristics introduced by the author, and their applications.
Keywords:
integration, Marcinkiewicz exponents, metric characteristics
Mots-clés : non-rectifiable curve, fractal.
Mots-clés : non-rectifiable curve, fractal.
@article{INTO_2020_176_a4,
author = {D. B. Kats},
title = {Integration over nonrectifiable curves as a distribution},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {50--60},
publisher = {mathdoc},
volume = {176},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/}
}
TY - JOUR AU - D. B. Kats TI - Integration over nonrectifiable curves as a distribution JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 50 EP - 60 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/ LA - ru ID - INTO_2020_176_a4 ER -
D. B. Kats. Integration over nonrectifiable curves as a distribution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 50-60. http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/