Integration over nonrectifiable curves as a distribution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 50-60

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results related to the generalization of the concept of a curvilinear integral to nonrectifiable curves, Marcinkiewicz exponents, new metric characteristics introduced by the author, and their applications.
Keywords: integration, Marcinkiewicz exponents, metric characteristics
Mots-clés : non-rectifiable curve, fractal.
@article{INTO_2020_176_a4,
     author = {D. B. Kats},
     title = {Integration over nonrectifiable curves as a distribution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/}
}
TY  - JOUR
AU  - D. B. Kats
TI  - Integration over nonrectifiable curves as a distribution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 50
EP  - 60
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/
LA  - ru
ID  - INTO_2020_176_a4
ER  - 
%0 Journal Article
%A D. B. Kats
%T Integration over nonrectifiable curves as a distribution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 50-60
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/
%G ru
%F INTO_2020_176_a4
D. B. Kats. Integration over nonrectifiable curves as a distribution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 50-60. http://geodesic.mathdoc.fr/item/INTO_2020_176_a4/