Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 34-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a nonlinear eigenvalue problem on a segment, which describes the propagation of monochromatic (polarized) electromagnetic TM waves in a planar dielectric waveguide filled with a nonlinear medium. Results on the solvability of the problem and properties of the eigenvalues are obtained.
Keywords: Maxwell's equations, nonlinear eigenvalue problem, asymptotics of eigenvalues, planar dielectric waveguide, nonlinear permittivity.
@article{INTO_2020_176_a3,
     author = {D. V. Valovik and S. V. Tikhov},
     title = {Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--49},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/}
}
TY  - JOUR
AU  - D. V. Valovik
AU  - S. V. Tikhov
TI  - Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 34
EP  - 49
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/
LA  - ru
ID  - INTO_2020_176_a3
ER  - 
%0 Journal Article
%A D. V. Valovik
%A S. V. Tikhov
%T Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 34-49
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/
%G ru
%F INTO_2020_176_a3
D. V. Valovik; S. V. Tikhov. Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 34-49. http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/

[1] Adams M., Vvedenie v teoriyu opticheskikh volnovodov, Mir, M., 1984 | MR

[2] Akhmediev N. N., Ankevich A., Solitony, Fizmatlit, M., 2003

[3] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956

[4] Vainshtein L. A., Elektromagnitnye volny, Radio i svyaz, M., 1988

[5] Valovik D. V., “Zadacha o rasprostranenii elektromagnitnykh TM-voln v sloe s proizvolnoi nelineinostyu”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1622–1632 | MR | Zbl

[6] Valovik D. V., Tikhov S. V., “O suschestvovanii beskonechnogo chisla sobstvennykh znachenii v odnoi nelineinoi zadache teorii volnovodov”, Zh. vychisl. mat. mat. fiz., 58:10 (2018), 1658–1667 | DOI

[7] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956

[9] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[10] Manykin E. A., Vzaimodeistvie izlucheniya s veschestvom. Fenomenologiya nelineinoi optiki, MIFI, M., 1996

[11] Mikhalake D., Nazmitdinov R. G., Fedyanin V. K., “Nelineinye opticheskie volny v sloistykh strukturakh”, Fiz. elem. chast. atom. yadra., 20:1 (1989), 198–253

[12] Mikhalake D., Nazmitdinov R. G., Fedyanin V. K.. Uang R. P., “Nelineinye napravlyaemye volny v planarnykh strukturakh”, Fiz. elem. chast. atom. yadra., 23:1 (1992), 122–173

[13] Mikhalake D., Fedyanin V. K., “$p$-polyarizovannye nelineinye poverkhnostnye i svyazannye volny v sloistykh strukturakh”, Teor. mat. fiz., 54:3 (1983), 443–455 | MR

[14] Osmolovskii V. G., Nelineinaya zadacha Shturma—Liuvillya, Izd-vo S.-Peterb. un-ta, 2003

[15] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984 | MR

[16] Reissig R., Sansone G., Konti R., Kachestvennaya teoriya nelineinykh differentsialnykh uravnenii, Nauka, M., 1974

[17] Trikomi F., Differentsialnye uravneniya, IL, M., 1962

[18] Shen I. R., Printsipy nelineinoi opitki, Nauka, M., 1989

[19] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:4 (1973), 349–381 | DOI | MR | Zbl

[20] Boardman A. D., Egan P., Lederer F., Langbein U., Mihalache D., Third-order nonlinear electromagnetic TE and TM guided waves, Elsevier, Amsterdam–London–New York–Tokyo, 1991

[21] Cazenave T., Semilinear Schrödinger equations, Am. Math. Soc., 2003 | MR | Zbl

[22] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical nonlinear waveguides”, Sov. Phys. JETP., 35:1 (1972), 44–47

[23] Massera J. L., “The existence of periodic solutions of systems of differential equations”, Duke Math. J., 17:4 (1950), 457–475 | DOI | MR | Zbl

[24] Schürmann H. W., Smirnov Yu. G., Shestopalov Yu. V., “Propagation of TE waves in cylindrical nonlinear dielectric waveguides”, Phys. Rev. E., 71:1 (2005), 016614 | DOI

[25] Smirnov Yu. G., Valovik D. V., “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity”, Phys. Rev. A., 91:1 (2015), 013840 | DOI | MR

[26] Smirnov Yu. G., Valovik D. V., “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell's equations with cubic nonlinearity”, J. Math. Phys., 57:10 (2016), 103504 | DOI | MR | Zbl

[27] Smol'kin E. Yu., Valovik D. V., “Guided electromagnetic waves propagating in a two-layer cylindrical dielectric waveguide with inhomogeneous nonlinear permittivity”, Adv. Math. Phys., 2015 (2015), 1–11 | DOI | MR

[28] Valovik D. V., “On spectral properties of the Sturm–Liouville operator with power nonlinearity”, Monatsh. Math., 2017, 1–17 | MR

[29] Valovik D. V., “On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity”, Appl. Math. Model., 53, January (2018), 296–309 | DOI | MR | Zbl

[30] Yuskaeva K. A., On the theory of TM-electromagnetic guided waves in a nonlinear planar slab structure, Ph.D. thesis, Universität Osnabrück, 2012