Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_176_a3, author = {D. V. Valovik and S. V. Tikhov}, title = {Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {34--49}, publisher = {mathdoc}, volume = {176}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/} }
TY - JOUR AU - D. V. Valovik AU - S. V. Tikhov TI - Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 34 EP - 49 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/ LA - ru ID - INTO_2020_176_a3 ER -
%0 Journal Article %A D. V. Valovik %A S. V. Tikhov %T Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 34-49 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/ %G ru %F INTO_2020_176_a3
D. V. Valovik; S. V. Tikhov. Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 34-49. http://geodesic.mathdoc.fr/item/INTO_2020_176_a3/
[1] Adams M., Vvedenie v teoriyu opticheskikh volnovodov, Mir, M., 1984 | MR
[2] Akhmediev N. N., Ankevich A., Solitony, Fizmatlit, M., 2003
[3] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956
[4] Vainshtein L. A., Elektromagnitnye volny, Radio i svyaz, M., 1988
[5] Valovik D. V., “Zadacha o rasprostranenii elektromagnitnykh TM-voln v sloe s proizvolnoi nelineinostyu”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1622–1632 | MR | Zbl
[6] Valovik D. V., Tikhov S. V., “O suschestvovanii beskonechnogo chisla sobstvennykh znachenii v odnoi nelineinoi zadache teorii volnovodov”, Zh. vychisl. mat. mat. fiz., 58:10 (2018), 1658–1667 | DOI
[7] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965
[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956
[9] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR
[10] Manykin E. A., Vzaimodeistvie izlucheniya s veschestvom. Fenomenologiya nelineinoi optiki, MIFI, M., 1996
[11] Mikhalake D., Nazmitdinov R. G., Fedyanin V. K., “Nelineinye opticheskie volny v sloistykh strukturakh”, Fiz. elem. chast. atom. yadra., 20:1 (1989), 198–253
[12] Mikhalake D., Nazmitdinov R. G., Fedyanin V. K.. Uang R. P., “Nelineinye napravlyaemye volny v planarnykh strukturakh”, Fiz. elem. chast. atom. yadra., 23:1 (1992), 122–173
[13] Mikhalake D., Fedyanin V. K., “$p$-polyarizovannye nelineinye poverkhnostnye i svyazannye volny v sloistykh strukturakh”, Teor. mat. fiz., 54:3 (1983), 443–455 | MR
[14] Osmolovskii V. G., Nelineinaya zadacha Shturma—Liuvillya, Izd-vo S.-Peterb. un-ta, 2003
[15] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984 | MR
[16] Reissig R., Sansone G., Konti R., Kachestvennaya teoriya nelineinykh differentsialnykh uravnenii, Nauka, M., 1974
[17] Trikomi F., Differentsialnye uravneniya, IL, M., 1962
[18] Shen I. R., Printsipy nelineinoi opitki, Nauka, M., 1989
[19] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:4 (1973), 349–381 | DOI | MR | Zbl
[20] Boardman A. D., Egan P., Lederer F., Langbein U., Mihalache D., Third-order nonlinear electromagnetic TE and TM guided waves, Elsevier, Amsterdam–London–New York–Tokyo, 1991
[21] Cazenave T., Semilinear Schrödinger equations, Am. Math. Soc., 2003 | MR | Zbl
[22] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical nonlinear waveguides”, Sov. Phys. JETP., 35:1 (1972), 44–47
[23] Massera J. L., “The existence of periodic solutions of systems of differential equations”, Duke Math. J., 17:4 (1950), 457–475 | DOI | MR | Zbl
[24] Schürmann H. W., Smirnov Yu. G., Shestopalov Yu. V., “Propagation of TE waves in cylindrical nonlinear dielectric waveguides”, Phys. Rev. E., 71:1 (2005), 016614 | DOI
[25] Smirnov Yu. G., Valovik D. V., “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity”, Phys. Rev. A., 91:1 (2015), 013840 | DOI | MR
[26] Smirnov Yu. G., Valovik D. V., “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell's equations with cubic nonlinearity”, J. Math. Phys., 57:10 (2016), 103504 | DOI | MR | Zbl
[27] Smol'kin E. Yu., Valovik D. V., “Guided electromagnetic waves propagating in a two-layer cylindrical dielectric waveguide with inhomogeneous nonlinear permittivity”, Adv. Math. Phys., 2015 (2015), 1–11 | DOI | MR
[28] Valovik D. V., “On spectral properties of the Sturm–Liouville operator with power nonlinearity”, Monatsh. Math., 2017, 1–17 | MR
[29] Valovik D. V., “On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity”, Appl. Math. Model., 53, January (2018), 296–309 | DOI | MR | Zbl
[30] Yuskaeva K. A., On the theory of TM-electromagnetic guided waves in a nonlinear planar slab structure, Ph.D. thesis, Universität Osnabrück, 2012