Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_176_a2, author = {N. S. Belevtsov and S. Yu. Lukashchuk}, title = {Multipole expansion of the fundamental solution of a fractional degree of the {Laplace} operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {26--33}, publisher = {mathdoc}, volume = {176}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a2/} }
TY - JOUR AU - N. S. Belevtsov AU - S. Yu. Lukashchuk TI - Multipole expansion of the fundamental solution of a fractional degree of the Laplace operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 26 EP - 33 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a2/ LA - ru ID - INTO_2020_176_a2 ER -
%0 Journal Article %A N. S. Belevtsov %A S. Yu. Lukashchuk %T Multipole expansion of the fundamental solution of a fractional degree of the Laplace operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 26-33 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a2/ %G ru %F INTO_2020_176_a2
N. S. Belevtsov; S. Yu. Lukashchuk. Multipole expansion of the fundamental solution of a fractional degree of the Laplace operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 26-33. http://geodesic.mathdoc.fr/item/INTO_2020_176_a2/
[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[2] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[3] Agrawal Om P., Muslih S., “Riesz fractional derivatives and fractional dimensional space”, Int. J. Theor. Phys., 260:2 (2010), 270–275 | MR
[4] Bateman H., Erdelyi A., Higher transcendental functions, McGraw-Hill, New York, 1953–1955
[5] Belevtsov N. S., Lukashchuk S. Y., “Lie group analysis of 2-dimensional space-fractional model for flow in porous media”, Math. Meth. Appl. Sci., 41:18 (2018), 9123–9133 | DOI | MR | Zbl
[6] Carillo J. A., Huang Y., Santos M. S., Vazquez J. L., “Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure”, J. Differ. Equations., 258:3 (2015), 736–763 | DOI | MR
[7] Greengard L., The rapid evaluation of potential fields in particle systems, MIT Press, Cambridge, 1998 | MR
[8] Greengard L., Rokhlin V., “A fast algorithm for particle simulations”, J. Comput. Phys., 135 (1987), 280–292 | DOI | MR
[9] Raghavan R., “Fractional diffusion: Performance of fractured wells”, J. Petroleum Sci. Eng., 92–93 (2012), 167–173 | DOI
[10] Stana D., Felix del Tesoa, Vazquez J. L., “Finite and infinite speed of propagation for porous medium equations with nonlocal pressure”, J. Differ. Equations., 260:2 (2016), 1154–1199 | DOI | MR
[11] Tausch J., “A fast method for solving the heat equation by layer potentials”, J. Comput. Phys., 224:2 (2007), 956–969 | DOI | MR | Zbl