Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 79-104
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct and examine the time-discretization scheme for the Cauchy problem for a linear homogeneous differential equation with the Caputo fractional derivative of order $\alpha \in (0,1)$ in time and containing the sectorial operator in a Banach space in the spatial part. The convergence of the scheme is established and error estimates are obtained in terms of the step of discretization. Properties of the Mittag-Leffler function, hypergeometric functions, and the calculus of sectorial operators in Banach spaces are used. Results of numerical experiments that confirm theoretical conclusions are presented.
Keywords:
Cauchy problem, Caputo derivative, Banach space, finite-difference scheme, error estimate, Mittag-Leffler function, hypergeometric function, sectorial operator.
@article{INTO_2020_175_a7,
author = {M. M. Kokurin},
title = {Discrete approximation of solutions of the {Cauchy} problem for a linear homogeneous differential-operator equation with a fractional {Caputo} derivative in a {Banach} space},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {79--104},
publisher = {mathdoc},
volume = {175},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/}
}
TY - JOUR AU - M. M. Kokurin TI - Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 79 EP - 104 VL - 175 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/ LA - ru ID - INTO_2020_175_a7 ER -
%0 Journal Article %A M. M. Kokurin %T Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 79-104 %V 175 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/ %G ru %F INTO_2020_175_a7
M. M. Kokurin. Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 79-104. http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/