Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_175_a7, author = {M. M. Kokurin}, title = {Discrete approximation of solutions of the {Cauchy} problem for a linear homogeneous differential-operator equation with a fractional {Caputo} derivative in a {Banach} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {79--104}, publisher = {mathdoc}, volume = {175}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/} }
TY - JOUR AU - M. M. Kokurin TI - Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 79 EP - 104 VL - 175 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/ LA - ru ID - INTO_2020_175_a7 ER -
%0 Journal Article %A M. M. Kokurin %T Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 79-104 %V 175 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/ %G ru %F INTO_2020_175_a7
M. M. Kokurin. Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 79-104. http://geodesic.mathdoc.fr/item/INTO_2020_175_a7/
[13] Abrashina-Zhadaeva N. G., Timoschenko I. A., “Konechno-raznostnye metody dlya uravneniya diffuzii s proizvodnymi drobnykh poryadkov v mnogomernoi oblasti”, Differ. uravn., 49:7 (2013), 819–825 | MR | Zbl
[14] Alikhanov A. A., “Ustoichivost i skhodimost raznostnykh skhem dlya kraevykh zadach uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. mat. mat. fiz., 56:4 (2016), 572–586 | DOI | MR | Zbl
[15] Bakushinskii A. B., Kokurin M. M., Kokurin M. Yu., “O skheme polnoi diskretizatsii nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Tr. in-ta mat. mekh. UrO RAN., 18:1 (2012), 96–-108
[16] Bakushinskii A. B., Kokurin M. M., Kokurin M. Yu., “Ob odnom klasse raznostnykh skhem resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Zh. vychisl. mat. mat. fiz., 52:3 (2012), 483–498 | MR | Zbl
[17] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965
[18] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972
[19] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966
[20] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[21] Kokurin M. M., “Ob optimizatsii otsenok skorosti skhodimosti nekotorykh klassov raznostnykh skhem resheniya nekorrektnoi zadachi Koshi”, Vychisl. met. program., 14 (2013), 58–76
[22] Kokurin M. M., “O edinstvennosti resheniya obratnoi zadachi Koshi dlya differentsialnogo uravneniya s drobnoi proizvodnoi v banakhovom prostranstve”, Izv. vuzov. Mat., 2013, no. 12, 19–35 | Zbl
[23] Kokurin M. M., “Raznostnye skhemy resheniya zadachi Koshi dlya lineinogo differentsialno-operatornogo uravneniya vtorogo poryadka”, Zh. vychisl. mat. mat. fiz., 54:4 (2014), 569–584 | DOI | Zbl
[24] Kokurin M. M., “Neobkhodimye i dostatochnye usloviya stepennoi skhodimosti metoda kvaziobrascheniya i raznostnykh metodov resheniya nekorrektnoi zadachi Koshi v usloviyakh tochnykh dannykh”, Zh. vychisl. mat. mat. fiz., 55:12 (2015), 2027–2041 | DOI | Zbl
[25] Kokurin M. M., “Otsenki skorosti skhodimosti i pogreshnosti raznostnykh skhem resheniya lineinoi nekorrektnoi zadachi Koshi vtorogo poryadka”, Vychisl. met. program., 18 (2017), 322–347
[26] Kochubei A. N., “Zadacha Koshi dlya evolyutsionnykh uravnenii drobnogo poryadka”, Differ. uravn., 25:8 (1989), 1359–1368 | MR
[27] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. mat. mat. fiz., 48:10 (2008), 1878–1887 | MR | Zbl
[28] Lyu Zh., Li M., Pastor Kh., Piskarev S. I., “Ob approksimatsii drobnykh razreshayuschikh semeistv”, Differ. uravn., 50:7 (2014), 937–946 | DOI
[29] Piskarev S. I., “Otsenki skorosti skhodimosti pri reshenii nekorrektnykh zadach dlya evolyutsionnykh uravnenii”, Izv. AN SSSR. Ser. mat., 51:3 (1987), 676-–687 | Zbl
[30] Popov A. Yu., Sedletskii A. M., “Raspredelenie kornei funktsii Mittag-Lefflera”, Sovr. mat. Fundam. napravl., 40 (2011), 3–171
[31] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR
[32] Radzievskaya E. I., Radzievskii G. V., “Dlya golomorfnoi v oblasti funktsii ostatochnyi chlen v formule Teilora dopuskaet zapis v forme Lagranzha”, Sib. mat. zh., 44:2 (2003), 402–414 | MR | Zbl
[33] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. mat. mat. fiz., 46:10 (2006), 1871–1881 | MR
[34] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2007
[35] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Eindhoven University of Technology, Pleven, 2001 | MR | Zbl
[36] Haase M., The Functional Calculus for Sectorial Operators, Birkhäuser, Basel, 2006 | MR | Zbl
[37] Jin B., Lazarov R., Zhou Z., “Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data”, SIAM J. Sci. Comput., 38:1 (2016), A146–A170 | DOI | MR | Zbl
[38] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[39] Li C., Zeng F., “The finite difference methods for fractional ordinary differential equations”, Numer. Funct. Anal. Optim., 34:2 (2013), 149–179 | DOI | MR | Zbl
[40] Lubich C., “Discretized fractional calculus”, SIAM J. Math. Anal., 17:3 (1986), 704–719 | DOI | MR | Zbl
[41] Sakamoto K., Yamamoto M., “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382 (2011), 426-–447 | DOI | MR | Zbl