Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The this paper, we introduce a pair of Sobolev spaces with special Jacobi–Gegenbauer weights, in which the general boundary-value problem for a class of ordinary integro-differential equations characterized by the positivity of the difference of orders of the inner and outer differential operators is well-posed in the Hadamard sense. Based on this result, a justification of the general polynomial projection method for solving the corresponding problem is performed. An application of general results to the proof of the convergence of the polynomial Galerkin method for solving the Cauchy problem in the Sobolev weighted space is given. The convergence rate of the method is characterized in terms of the best polynomial approximations of an exact solution, which automatically responds to the smoothness properties of the coefficients of the equation.
Keywords: Sobolev space, Jacobi–Gegenbauer weight, integro-differential equation, general boundary-value problem, well-posedness, projection method
Mots-clés : polynomial approximation, convergence.
@article{INTO_2020_175_a6,
     author = {Yu. R. Agachev and M. Yu. Pershagin},
     title = {Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {175},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a6/}
}
TY  - JOUR
AU  - Yu. R. Agachev
AU  - M. Yu. Pershagin
TI  - Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 69
EP  - 78
VL  - 175
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_175_a6/
LA  - ru
ID  - INTO_2020_175_a6
ER  - 
%0 Journal Article
%A Yu. R. Agachev
%A M. Yu. Pershagin
%T Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 69-78
%V 175
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_175_a6/
%G ru
%F INTO_2020_175_a6
Yu. R. Agachev; M. Yu. Pershagin. Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 69-78. http://geodesic.mathdoc.fr/item/INTO_2020_175_a6/

[1] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov, II”, Izv. vuzov. Mat., 1968, no. 10, 21–29 | Zbl

[2] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980 | MR

[3] Agachev Yu. R., “Skhodimost obschego polinomialnogo proektsionnogo metoda resheniya nekorrektnykh integrodifferentsialnykh uravnenii”, Izv. vuzov. Mat., 2007, no. 8, 3–14 | MR

[4] Agachev Yu. R., Pershagin M. Yu., “Korrektnaya postanovka uslovno korrektnykh integro-differentsialnykh uravnenii v novoi pare nevesovykh prostranstv Soboleva”, Izv. vuzov. Mat., 2017, no. 8, 80–-85 | MR

[5] Dautov R. Z., Timerbaev M. R., “Tochnye otsenki approksimatsii polinomami v vesovykh prostranstvakh Soboleva”, Differ. uravn., 51:7 (2015), 890–898 | DOI | Zbl