Analysis of critical phenomena in a dynamic system under the influence of random perturbations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 36-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of stochastic models of an electrochemical reaction with a perturbation described by a generalized white-noise random process. Noise-induced transitions are analyzed, the influence of external perturbations on limit cycles is examined, and the sensitivity of the cycle to noise was found. The dependence of the threshold value of the noise intensity on the control parameter of the system is established. The critical value of the noise intensity at which small-amplitude oscillations turn into mixed-type oscillations is obtained. The critical value of noise corresponding to the transition from canard trajectories to relaxation oscillations in the model is found. It is shown that an increase in the intensity of random perturbations can lead to significant changes of oscillation modes of the model up to their destruction.
Mots-clés : random perturbation
Keywords: white noise, stochastic sensitivity, critical phenomenon, canard trajectory, differential equation, stochastic equation.
@article{INTO_2020_175_a3,
     author = {N. M. Firstova},
     title = {Analysis of critical phenomena in a dynamic system under the influence of random perturbations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {36--43},
     publisher = {mathdoc},
     volume = {175},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a3/}
}
TY  - JOUR
AU  - N. M. Firstova
TI  - Analysis of critical phenomena in a dynamic system under the influence of random perturbations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 36
EP  - 43
VL  - 175
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_175_a3/
LA  - ru
ID  - INTO_2020_175_a3
ER  - 
%0 Journal Article
%A N. M. Firstova
%T Analysis of critical phenomena in a dynamic system under the influence of random perturbations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 36-43
%V 175
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_175_a3/
%G ru
%F INTO_2020_175_a3
N. M. Firstova. Analysis of critical phenomena in a dynamic system under the influence of random perturbations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 36-43. http://geodesic.mathdoc.fr/item/INTO_2020_175_a3/

[1] Bashkirtseva I. A., Perevalova T. V., “Analiz stokhasticheskikh attraktorov pri bifurkatsii tochka pokoya-tsikl”, Avtomat. telemekh., 2007, no. 10, 53-–69 | Zbl

[2] Golodova E. S., Schepakina E. A., “Modelirovanie bezopasnykh protsessov goreniya s maksimalnoi temperaturoi”, Mat. model., 20:5 (2008), 55–68 | Zbl

[3] Sobolev V. A., Schepakina E. A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike, Fizmatlit, M., 2010

[4] Firstova N. M., “Issledovanie kriticheskikh yavlenii v modeli elektrokhimicheskogo reaktora”, Vestn. SamGU. Estestvennonauch. ser., 110:9/2 (2013), 221–226

[5] Schepakina E. A., “Singulyarnye vozmuscheniya v zadache modelirovaniya bezopasnykh rezhimov goreniya”, Mat. model., 15:8 (2003), 113–117

[6] Schepakina E. A., “Singulyarno vozmuschennye modeli goreniya v mnogofaznykh sredakh”, Sib. zh. industr. mat., 6:4 (16) (2003), 142–157 | MR

[7] Schepakina E. A., “Usloviya bezopasnosti vosplameneniya goryuchei zhidkosti v poristom izolyatsionnom materiale”, Sib. zh. industr. mat., 5:3 (11) (2002), 162–-169 | MR

[8] Bashkirtseva I. A., “Stochastic sensitivity analysis: theory and numerical algorithms”, IOP Conf. Ser. Mater. Sci. Eng., 192 (2017), 012024 | DOI | MR

[9] Bashkirtseva I. A., Ryashko L. B., “Sensitivity analysis of the stochastically and periodically forced brusselator”, Phys. A., 278 (2000), 126–139 | DOI

[10] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity analysis of noise-induced excitement in a prey–predator plankton system”, Front. Life Sci., 5 (2011), 141-148 | DOI

[11] Berglund N., Gentz B., Kuehn C., “Hunting french ducks in a noisy environment”, J. Differ. Equations., 252 (9) (2012), 4786–4841 | DOI | MR | Zbl

[12] Berthier F., Diard J. P., Nugues S., “On the nature of the spontaneous oscillations observed for the Koper–Sluyters electrocatalitic reaction”, J. Electroanal. Chem., 436 (1) (1997), 35–42 | DOI

[13] De Swart H. E., Grasman J., “Effect of stochastic perturbations on a low-order spectral model of the atmospheric circulation”, Tellus., 39A (1987), 10–24 | DOI | MR

[14] Grasman J., “Asymptotic analysis of nonlinear systems with small stochastic perturbations”, Math. Comput. Sim., 31 (1989), 41–54 | DOI | MR | Zbl

[15] Koper M. T. M., Sluyters J. H., “Instabilities and oscillations in simple models of electrocatalytic surface reactions”, J. Electroanal. Chem., 371 (1) (1994), 149 | DOI

[16] Firstova N., Shchepakina E., “Conditions for the critical phenomena in a dynamic model of an electrocatalytic reaction”, J. Phys. Conf. Ser., 811 (2017), 012002 | DOI | MR

[17] Firstova N., Shchepakina E., “Modelling of Critical Conditions for an Electrochemical Reactor Model”, Proc. Eng., 201 (2017), 495–502 | DOI

[18] Firstova N. M., Shchepakina E. A., “Study of oscillatory processes in the one model of electrochemical reactor”, CEUR Workshop Proc., 1638 (2016), 731–741

[19] Shchepakina E. A., “Black swans and canards in self-ignition problem”, Nonlinear Anal. Real World Appl., 4 (2003), 45–50 | DOI | MR | Zbl

[20] Shchepakina E. A., “Critical phenomena in a model of fuel's heating in a porous medium”, CEUR Workshop Proc., 1490 (2015), 179-189