Congruences and unitary congruences in matrix theory
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 19-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of basic facts related to important matrix transformations such as congruence, pseudo-similarity, and unitary congruence. The concept of a rational algorithm is formulated and the question of which problems in the congruence theory can be solved by rational algorithms is discussed.
Keywords: $T$-congruence, $*$-congruence, similarity, pseudo-similarity, canonical form, co-square, Schur form
Mots-clés : Youla form, rational algorithm.
@article{INTO_2020_175_a1,
     author = {Kh. D. Ikramov},
     title = {Congruences and unitary congruences in matrix theory},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {175},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Congruences and unitary congruences in matrix theory
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 19
EP  - 26
VL  - 175
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_175_a1/
LA  - ru
ID  - INTO_2020_175_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Congruences and unitary congruences in matrix theory
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 19-26
%V 175
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_175_a1/
%G ru
%F INTO_2020_175_a1
Kh. D. Ikramov. Congruences and unitary congruences in matrix theory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 19-26. http://geodesic.mathdoc.fr/item/INTO_2020_175_a1/

[4] Ikramov Kh. D., “Antilineinye operatory i spetsialnye matritsy”, Zap. nauchn. sem. POMI., 405 (2012), 119–126

[5] Ikramov Kh. D., “O proverke kongruentnosti akkretivnykh matrits”, Mat. zametki., 101 (2017), 854–859 | DOI | Zbl

[6] Ikramov Kh. D., “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zh. vychisl. mat., 21 (2018), 255–258 | Zbl

[7] Fassbender H., Ikramov Kh. D., “Conjugate-normal matrices: A survey”, Linear Algebra Appl., 429:7 (2008), 1425–1441 | DOI | MR | Zbl

[8] Johnson C. R., Furtado S., “A generalization of Sylvester's law of inertia”, Linear Algebra Appl., 338 (2001), 287–290 | DOI | MR | Zbl

[9] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, 2012 | MR

[10] Horn R. A., Sergeichuk V. V., “A regularization algorithm for matrices of bilinear and sesquilinear forms”, Linear Algebra Appl., 412:2-3 (2006), 380–395 | DOI | MR | Zbl

[11] Horn R. A., Sergeichuk V. V., “Canonical forms for complex matrices congruence and $*$-congruence”, Linear Algebra Appl., 416:2-3 (2006), 1010–1032 | DOI | MR | Zbl