On definitions of Finsler spaces and axiomatics of singular Finsler geometry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

A review of various approaches to the concept of a Finsler space based on different definitions is given. In particular, the axiomatics of a singular Finsler space is given.
Keywords: Finsler space, fundamental tensor, Kropina space, geodesic, intrinsic metric, strictly convex norm.
Mots-clés : tangent space
@article{INTO_2020_175_a0,
     author = {P. D. Andreev},
     title = {On definitions of {Finsler} spaces and axiomatics of singular {Finsler} geometry},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {175},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/}
}
TY  - JOUR
AU  - P. D. Andreev
TI  - On definitions of Finsler spaces and axiomatics of singular Finsler geometry
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 3
EP  - 18
VL  - 175
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/
LA  - ru
ID  - INTO_2020_175_a0
ER  - 
%0 Journal Article
%A P. D. Andreev
%T On definitions of Finsler spaces and axiomatics of singular Finsler geometry
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 3-18
%V 175
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/
%G ru
%F INTO_2020_175_a0
P. D. Andreev. On definitions of Finsler spaces and axiomatics of singular Finsler geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 3-18. http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/