On definitions of Finsler spaces and axiomatics of singular Finsler geometry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
A review of various approaches to the concept of a Finsler space based on different definitions is given. In particular, the axiomatics of a singular Finsler space is given.
Keywords:
Finsler space, fundamental tensor, Kropina space, geodesic, intrinsic metric, strictly convex norm.
Mots-clés : tangent space
Mots-clés : tangent space
@article{INTO_2020_175_a0,
author = {P. D. Andreev},
title = {On definitions of {Finsler} spaces and axiomatics of singular {Finsler} geometry},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--18},
publisher = {mathdoc},
volume = {175},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/}
}
TY - JOUR AU - P. D. Andreev TI - On definitions of Finsler spaces and axiomatics of singular Finsler geometry JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 3 EP - 18 VL - 175 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/ LA - ru ID - INTO_2020_175_a0 ER -
%0 Journal Article %A P. D. Andreev %T On definitions of Finsler spaces and axiomatics of singular Finsler geometry %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 3-18 %V 175 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/ %G ru %F INTO_2020_175_a0
P. D. Andreev. On definitions of Finsler spaces and axiomatics of singular Finsler geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 3-18. http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/