Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_175_a0, author = {P. D. Andreev}, title = {On definitions of {Finsler} spaces and axiomatics of singular {Finsler} geometry}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--18}, publisher = {mathdoc}, volume = {175}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/} }
TY - JOUR AU - P. D. Andreev TI - On definitions of Finsler spaces and axiomatics of singular Finsler geometry JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 3 EP - 18 VL - 175 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/ LA - ru ID - INTO_2020_175_a0 ER -
%0 Journal Article %A P. D. Andreev %T On definitions of Finsler spaces and axiomatics of singular Finsler geometry %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 3-18 %V 175 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/ %G ru %F INTO_2020_175_a0
P. D. Andreev. On definitions of Finsler spaces and axiomatics of singular Finsler geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 3-18. http://geodesic.mathdoc.fr/item/INTO_2020_175_a0/
[1] Andreev P. D., “Dokazatelstvo gipotezy Buzemana dlya $G$-prostranstv nepolozhitelnoi krivizny”, Algebra anal., 26:2 (2014), 1–20
[2] Andreev P. D., “Struktura normirovannogo prostranstva v $G$-prostranstve Buzemana konicheskogo tipa”, Mat. zametki., 101:2 (2017), 169–180 | DOI | Zbl
[3] Asanov G. S., “Finslerova geometriya”, Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985, 613–616
[4] Bliznikas V. I., “Prostranstva Finslera i ikh obobscheniya”, Itogi nauki. Algebra. Topologiya. Geometriya. 1967., VINITI, M., 1969, 73–125
[5] Buzeman G., Geometriya geodezicheskikh, GIFML, M., 1962
[6] Kropina V. K., “O proektivnykh finslerovykh prostranstvakh s metrikoi nekotorogo spetsialnogo vida”, Nauch. dokl. vyssh. shk., 1959, no. 2, 38–42
[7] Kropina V. K., “O proektivnykh dvumernykh prostranstvakh Finslera so spetsialnoi metrikoi”, Tr. semin. vekt. tenz. anal., 11 (1961), 277–291 | MR
[8] Rund Kh., Differentsialnaya geometriya finslerovykh prostranstv, Nauka, M., 1981
[9] Ob osnovaniyakh geometrii. Sbornik klassicheskikh rabot po geometrii Lobachevskogo i razvitiyu ee idei, ed. Norden A. P., GITTL, M., 1956
[10] Sosov E. N., “Kasatelnoe prostranstvo po Buzemanu”, Izv. vuzov. Mat., 2005, no. 6, 71–75 | MR | Zbl
[11] Andreev P., “Foundations of singular Finsler geometry”, Eur. J. Math., 3:4 (2017), 767–787 | DOI | MR | Zbl
[12] Andreev P., “Busemann problems for $G$-spaces”, Herbert Busemann. Selected Works, Springer, 2018, 85–113 | MR
[13] Antonelly P. L., Ingarden R. S., Matsumoto M., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Springer Netherlands, Dordrecht, 1993 | MR
[14] Balestro V., Horv/'ath Á. G., Martini H., Teixeira R., “Angles in normed spaces”, Aequat. Math., 91 (2017), 201–236 | DOI | MR | Zbl
[15] Bao D., Chern S. S., Shen Z., An introduction to Riemann–Finsler geometry, Springer-Verlag, New York, 2000 | MR | Zbl
[16] Berwald L., “Über Parallelüberstragung in Räumen mit allgemeiner Massbestimmung”, Jber. Deutsch. Math.-Verein., 34 (1926), 213–220 | Zbl
[17] Berwald L., “Untersuchung der Krümmung allgemeiner metrischer Räume auf Grund des in ihnen herrschenden Parallelismus”, Math. Z., 25:1 (1926), 40–73 | DOI | MR | Zbl
[18] Berwald L., “Über zweidimensionale allgemeine metrische Räume”, J. Reine Angew. Math., 156 (1927), 191–222 | MR | Zbl
[19] Berwald L., “Über Finslerische und verwandte Räume”, Čas. Mat. Fys., 64 (1935), 1–16
[20] Berwald L., “Über Finslerische und Cartansche Geometrie. I. Geometrische Erklärungen der Krümmung und des Hauptskalars im zweidimensionalen Finslersche Räume”, Mathematica (Timisoara)., 17 (1941), 34–55 | MR
[21] Berwald L., “Über Finslerische und Cartansche Geometrie. II. Invarianten bei der Variation vielfacher Integrale und Parallelflachen in Cartanischen Räumen”, Compos. Math., 7 (1939), 141–176 | MR
[22] Berwald L., “On Finsler and Cartan Geometry. III. Two-dimensional Finsler spaces with rectilinear extremals”, Ann. Math., 42:2 (1941), 84–112 | DOI | MR
[23] Berwald L., “Über Finslerische und Cartansche Geometrie. IV. Projectivekrümmung allgemeiner affiner Räume und Finslerische Räume skalarer Krümmung”, Ann. Math., 48:2 (1947), 755–781 | DOI | MR | Zbl
[24] Bliss G. A., “The Weierstrass $E$-function for problems of the calculus of variations in space”, Trans. Am. Math. Soc., 15:4 (1914), 369–378 | MR | Zbl
[25] Busemann H., Metric Methods in Finsler Spaces and in the Foundations of Geometry, Princeton Univ. Press, Princeton, 1942 | MR | Zbl
[26] Busemann H., “Local metric geometry”, Trans. Am. Math. Soc., 54 (1944), 234–267 | MR
[27] Busemann H., “The geometry of Finsler spaces”, Bull. Am. Math. Soc., 56:1 (1950), 5–16 | DOI | MR | Zbl
[28] Busemann H., “The foundations of Minkowskian geometry”, Comm. Math. Helv., 24 (1950), 156–186 | DOI | MR
[29] Busemann H., “On normal coordinates in Finsler spaces”, Math. Ann., 129 (1955), 417–423 | DOI | MR | Zbl
[30] Carathéodory C., Über die discontinuerlichen Lösungen in der Variacionsrechnung, Dissertation., Göttingen, 1904
[31] Cartan E., Les espaces de Finsler, Hermann, Paris, 1934 | MR | Zbl
[32] Cartan E., “Sur les espaces de Finsler”, C. R. Acad. Sci. Paris., 196 (1933), 582–586 | MR
[33] Finsler P., Ueber Kurven und Flächen in allgemeinen Räume, Inaugural Dissertation., Göttinden, 1918 | MR | Zbl
[34] Javaloyes M., Sanchez M., “On the definition and examples of Finsler Metrics”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13:3 (2014), 813–858 | MR | Zbl
[35] Matsumoto M., “A slop of a mountain is a Finsler surface with respect to the time measure”, J. Math. Kyoto Univ., 29 (1989), 17–25 | DOI | MR | Zbl
[36] Matsumoto M., Hojo S., “A conclusive theorem on $C$-reducible Finsler spaces”, Tensor., 28:2 (1974), 239–249 | MR
[37] Riemann B., Über die Hypothesen, welche der Geometrie zu grunde liegen, Springer, Berlin, 1919 | MR | Zbl
[38] Rinow W., Die innere Geometrie der metrischen Räume, Springer, Berlin, 1961 | MR | Zbl
[39] Synge S. L., “A generalization of the Riemann line element”, Trans. Am. Math. Soc., 27:1 (1925), 61–67 | DOI | MR | Zbl
[40] Taylor J. H., “A generalization of Levi-Civita parallelism and the Frenet formulas”, Trans. Am. Math. Soc., 27:2 (1925), 246–264 | MR | Zbl
[41] Sabau S., Shibuya K., Yoshikawa R., “Geodesics on strong Kropina manifolds”, Eur. J. Math., 3:4 (2017), 1172–1224 | DOI | MR | Zbl
[42] Xiaohuan Mo., An Introduction to Finssler Geometry, World Scientific, Peking, 2006 | MR
[43] Zhongmin Shen, Lectures on Finsler Geometry, World Scientific, Singapore–New Jersey–London–Hong Kong, 2001 | MR | Zbl