On features of the solution of a boundary-value problem for the multidimensional integro-differential Benney--Luke equation with spectral parameters
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 109-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problems on the solvability and constructing solutions of one nonlocal boundary-value problem for the multidimensional fourth-order integro-differential Benney–Luke equation with degenerate kernel and spectral parameters. For various values of spectral parameters, necessary and sufficient conditions of the existence of a solution are obtained. The Fourier series for solutions of the problem corresponding to various sets of spectral parameters are obtained. For regular values of spectral parameters, the absolute and uniform convergence of the series and the possibility of their termwise differentiation with respect to all variables are proved. The problem is also examined studied for cases of irregular values of spectral parameters.
Keywords: boundary-value problem, Fourier series, integral condition, spectral parameter, solvability
Mots-clés : construction of solutions.
@article{INTO_2020_174_a8,
     author = {T. K. Yuldashev},
     title = {On features of the solution of a boundary-value problem for the multidimensional integro-differential {Benney--Luke} equation with spectral parameters},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {109--129},
     publisher = {mathdoc},
     volume = {174},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_174_a8/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On features of the solution of a boundary-value problem for the multidimensional integro-differential Benney--Luke equation with spectral parameters
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 109
EP  - 129
VL  - 174
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_174_a8/
LA  - ru
ID  - INTO_2020_174_a8
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On features of the solution of a boundary-value problem for the multidimensional integro-differential Benney--Luke equation with spectral parameters
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 109-129
%V 174
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_174_a8/
%G ru
%F INTO_2020_174_a8
T. K. Yuldashev. On features of the solution of a boundary-value problem for the multidimensional integro-differential Benney--Luke equation with spectral parameters. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 109-129. http://geodesic.mathdoc.fr/item/INTO_2020_174_a8/

[1] \label{tur11} Anikonov Yu. E., “Ob odnoznachnosti resheniya obratnoi zadachi dlya kvantovogo kineticheskogo uravneniya”, Mat. sb., 181:1 (1990), 68–74 | Zbl

[2] \label{tur22} Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | MR

[3] \label{tur33} Asanova A. T., “O nelokalnoi zadache s integralnymi usloviyami dlya sistemy giperbolicheskikh uravnenii”, Differ. uravn., 54:2 (2018), 202–214 | DOI

[4] \label{tur44} Akhtyamov A. M., Muftakhov A. V., Akhtyamova A. A., “Ob opredelenii zakrepleniya i nagruzhennosti odnogo iz kontsov sterzhnya po sobstvennym chastotam ego kolebanii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2013, no. 3, 114–129 | Zbl

[5] \label{tur55} Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Mat. model., 12:1 (2000), 94–103 | MR | Zbl

[6] \label{tur66} Gordeziani D. G., Samarskii A. A., “Nekotorye zadachi termouprugosti plastin i obolochek i metod summarnoi approksimatsii”, Kompl. anal. prilozh., Nauka, M., 1978, 173–186

[7] \label{tur77} Ivanov V. V., “Prilozhenie teorii kraevykh zadach i singulyarnykh integralnykh uravnenii v teorii avtomaticheskogo upravleniya”, Differ. uravn., 1:8 (1965), 1099–1107 | Zbl

[8] \label{tur88} Ivanchov N. I., “Kraevye zadachi dlya parabolicheskogo uravneniya s integralnym usloviem”, Differ. uravn., 40:4 (2004), 547–564 | MR | Zbl

[9] \label{tur99} Pulkina L. S., “Nelokalnaya zadacha dlya giperbolicheskogo uravneniya s integralnymi usloviyami 1 roda s yadrami, zavisyaschimi ot vremeni”, Izv. vuzov. Mat., 2012, no. 10, 32–44 | Zbl

[10] \label{tur100} Tikhonov I. V., “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 67:2 (2003), 133–166 | DOI | MR | Zbl

[11] \label{tur111} Shkhanukov M. X., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differ. uravn., 18:4 (1982), 689–699 | MR | Zbl

[12] \label{tur1122} Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[13] \label{tur1133} Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya differentsialnogo uravneniya tipa Bussineska”, Differ. uravn., 54:10 (2018), 1411–1419 | DOI | Zbl

[14] \label{tur1144} Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differ. uravn., 54:12 (2018), 1687–1694 | DOI | Zbl

[15] \label{tur1155} Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl

[16] \label{tur1166} Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii J. Math., 38:3 (2017), 547–553 | DOI | MR | Zbl