Reduction theorems in the social choice theory
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, combinatorial theorems relating to the theory of social choice are obtained. These theorems describe general conditions under which the problem on the preserving the preference set $\mathcal{D}$ by an arbitrary aggregation rule $f$ and the problem on the compatibility of the preference set $\mathcal{D}$ with a pair $(f,\mathcal{C})$ can be reduced to similar problems for two specific aggregation rules: the majority rule maj and the “counting rhyme” rule cog. Results are obtained within the framework of clone approach in the theory of social choice proposed by S. Shelah and developed by the authors.
Keywords: social choice theory, aggregation rule, preference set.
@article{INTO_2020_174_a4,
     author = {N. L. Poliakov and M. V. Shamolin},
     title = {Reduction theorems in the social choice theory},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {174},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_174_a4/}
}
TY  - JOUR
AU  - N. L. Poliakov
AU  - M. V. Shamolin
TI  - Reduction theorems in the social choice theory
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 46
EP  - 51
VL  - 174
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_174_a4/
LA  - ru
ID  - INTO_2020_174_a4
ER  - 
%0 Journal Article
%A N. L. Poliakov
%A M. V. Shamolin
%T Reduction theorems in the social choice theory
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 46-51
%V 174
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_174_a4/
%G ru
%F INTO_2020_174_a4
N. L. Poliakov; M. V. Shamolin. Reduction theorems in the social choice theory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 46-51. http://geodesic.mathdoc.fr/item/INTO_2020_174_a4/

[1] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta, I”, Kibernetika., 3 (1969), 1–10 | MR | Zbl

[2] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta, II”, Kibernetika., 5 (1969), 1–9 | MR | Zbl

[3] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[4] Kurosh A. G., Lektsii po obschei algebre, Lan, SPb., 2005 | MR

[5] Maltsev A. I., “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika., 5:2 (1966), 5–24 | MR | Zbl

[6] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000

[7] Marchenkov S. S., “Klonovaya klassifikatsiya dualno diskriminatornykh algebr s konechnym nositelem”, Mat. zametki., 61:3 (1997), 359–366 | DOI | MR | Zbl

[8] Marchenkov S. S., Funktsionalnye sistemy s operatsiei superpozitsii, Fizmatlit, M., 2004

[9] Nguen Van Khoa, “O semeistvakh zamknutykh klassov $k$-znachnoi logiki, sokhranyaemykh vsemi avtomorfizmami”, Diskr. mat., 5:4 (1993), 87–108 | MR

[10] Parvatov N. G., “Sootvetstvie Galua dlya zamknutykh klassov diskretnykh funktsii”, Prikl. diskr. mat., 2 (8) (2010), 10–15

[11] Polyakov N. L., Shamolin M. V., “O zamknutykh simmetrichnykh klassakh funktsii, sokhranyayuschikh lyuboi odnomestnyi predikat”, Vestn. SamGU. Estestvennonauch. ser., 2013, no. (6) 107, 61–73

[12] Polyakov N. L., Shamolin M. V., “Ob odnom obobschenii teoremy Errou impossibility theorem”, Dokl. RAN., 456:2 (2014), 143–145 | DOI | Zbl

[13] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 51 (1958), 5–142

[14] Arrow K., Social Choice and Individual Values, Yale University Press, 1963 | MR

[15] Aleskerov F. T., Arrovian Aggregation Models, Springer US, 1999 | MR

[16] Kaneko M., “Necessary and Suffient Condition for Transitivity in Voting Theory”, J. Econ. Theory., 11 (1975), 385–393 | DOI | MR | Zbl

[17] Moulin H., Axioms of Cooperative Decision Making, Cambridge Univ. Press, 1991 | MR

[18] Polyakov N. L., Functional Galois connections and a classification of symmetric conservative clones with a finite carrier, arXiv: 1810.02945 [math.LO]

[19] Post E. L., Two-valued iterative systems of mathematical logic, Princeton Univ. Press, 1941 | MR | Zbl

[20] Sen A. K., “A possibility theorem on majority decisions”, Econometrica., 3:4 (1966), 491–499 | DOI | MR

[21] Shelah S., “On the Arrow property”, Adv. Appl. Math., 34 (2005), 217–251 | DOI | MR | Zbl

[22] Shelah S., “What majority decisions are possible”, Discr. Math., 309 (2009), 2349–2364 | DOI | MR | Zbl

[23] Rosenberg I. G., “La structure des fonctions de plusieurs variables sur un ensemble fini”, C. R. Acad. Sci. Paris. Ser. A. B., 260 (1965), 3817–3819 | MR | Zbl

[24] Rubinstein A., Fishburn P., “Algebraic aggregation theory”, J. Econ. Theory., 38 (1986) | DOI | MR | Zbl