Mean-value formula for a hyperbolic equation with a factorizable operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 126-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mean-value formula for a linear partial differential hyperbolic equation with an operator splitting into first-order factors is obtained. This formula can be interpreted as an extension of the Asgeirsson principle to the case considered.
Keywords: accompanying distribution, mean-value formula, factorization of a differential operator
Mots-clés : inclusion-exception formula.
@article{INTO_2019_173_a9,
     author = {M. V. Polovinkina},
     title = {Mean-value formula for a hyperbolic equation with a factorizable operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {126--131},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/}
}
TY  - JOUR
AU  - M. V. Polovinkina
TI  - Mean-value formula for a hyperbolic equation with a factorizable operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 126
EP  - 131
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/
LA  - ru
ID  - INTO_2019_173_a9
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%T Mean-value formula for a hyperbolic equation with a factorizable operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 126-131
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/
%G ru
%F INTO_2019_173_a9
M. V. Polovinkina. Mean-value formula for a hyperbolic equation with a factorizable operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 126-131. http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/

[1] Bitsadze A. V., Nakhushev A. M., “K teorii uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Differ. uravn., 10:12 (1974), 2184–2191 | MR | Zbl

[2] Gilbarg D., Trudinger P., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp.

[3] Ilin V. A., “O ryadakh Fure po fundamentalnym sistemam funktsii operatora Beltrami”, Differ. uravn., 5:11 (1969), 1940–1978 | MR | Zbl

[4] Ilin V. A., “Nekotorye svoistva regulyarnogo resheniya uravneniya Gelmgoltsa v ploskoi oblasti”, Mat. zametki, 15:6 (1974), 885–890 | Zbl

[5] Ilin V. A., Moiseev E. I., “Formula srednego znacheniya dlya prisoedinennykh funktsii operatora Laplasa”, Differ. uravn., 17:10 (1981), 1908–1910 | MR | Zbl

[6] Ion F., Ploskie volny i sfericheskie srednie, IL, M., 1958

[7] Kolmogorov A. N., “Ob opredelenii srednego”, Izbrannye trudy. Matematika i mekhanika, v. 1, Nauka, M., 1985, 136–138

[8] Kurant R., Gilbert D., Uravneniya matematicheskoi fiziki, GITTL, M.-L., 1951 | MR

[9] Meshkov V. Z., Polovinkin I. P., Polovinkina M. V., Ermakova Yu. D., Rabeeakh S. A., “Formula srednego znacheniya dlya dvumernogo lineinogo giperbolicheskogo uravneniya”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2016, no. 4, 121–126 | Zbl

[10] Moiseev E. I., “Asimptoticheskaya formula srednego znacheniya dlya regulyarnogo resheniya differentsialnogo uravneniya”, Differ. uravn., 16:5 (1980), 827–844 | MR | Zbl

[11] Moiseev, T. E., “Formula srednego znacheniya dlya garmonicheskoi funktsii v krugovom sektore”, Dokl. RAN., 432:5 (2010), 592–593 | Zbl

[12] Sitnik S. M., “Obobscheniya neravenstv Koshi—Bunyakovskogo metodom srednikh znachenii i ikh prilozheniya”, Fundamentalnaya matematika. Izbrannye trudy uchastnikov Voronezhskogo matematicheskogo seminara po matematicheskomu analizu, teorii funktsii i differentsialnym uravneniyam, Chernozemnyi almanakh nauchnykh issledovanii, eds. Minin L. A., Novikov I. Ya., Rodin V. A., Sitnik S. M., Voronezh, 2005, 3–42

[13] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, Mir, M., 1986

[14] Benzoni-Gavage S., Serre D., Multi-Dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, Oxford Univ. Press, 2006 | MR

[15] Meshkov V. Z., Polovinkin I. P., “Mean-value properties of solutions of linear partial differential equations”, J. Math. Sci., 160:1 (2009), 45–52 | DOI | MR | Zbl

[16] Zalcman L., “Mean values and differential equations”, Isr. J. Math., 14 (1973), 339–352 | DOI | MR | Zbl