Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_173_a9, author = {M. V. Polovinkina}, title = {Mean-value formula for a hyperbolic equation with a factorizable operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {126--131}, publisher = {mathdoc}, volume = {173}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/} }
TY - JOUR AU - M. V. Polovinkina TI - Mean-value formula for a hyperbolic equation with a factorizable operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 126 EP - 131 VL - 173 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/ LA - ru ID - INTO_2019_173_a9 ER -
%0 Journal Article %A M. V. Polovinkina %T Mean-value formula for a hyperbolic equation with a factorizable operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 126-131 %V 173 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/ %G ru %F INTO_2019_173_a9
M. V. Polovinkina. Mean-value formula for a hyperbolic equation with a factorizable operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 126-131. http://geodesic.mathdoc.fr/item/INTO_2019_173_a9/
[1] Bitsadze A. V., Nakhushev A. M., “K teorii uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Differ. uravn., 10:12 (1974), 2184–2191 | MR | Zbl
[2] Gilbarg D., Trudinger P., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp.
[3] Ilin V. A., “O ryadakh Fure po fundamentalnym sistemam funktsii operatora Beltrami”, Differ. uravn., 5:11 (1969), 1940–1978 | MR | Zbl
[4] Ilin V. A., “Nekotorye svoistva regulyarnogo resheniya uravneniya Gelmgoltsa v ploskoi oblasti”, Mat. zametki, 15:6 (1974), 885–890 | Zbl
[5] Ilin V. A., Moiseev E. I., “Formula srednego znacheniya dlya prisoedinennykh funktsii operatora Laplasa”, Differ. uravn., 17:10 (1981), 1908–1910 | MR | Zbl
[6] Ion F., Ploskie volny i sfericheskie srednie, IL, M., 1958
[7] Kolmogorov A. N., “Ob opredelenii srednego”, Izbrannye trudy. Matematika i mekhanika, v. 1, Nauka, M., 1985, 136–138
[8] Kurant R., Gilbert D., Uravneniya matematicheskoi fiziki, GITTL, M.-L., 1951 | MR
[9] Meshkov V. Z., Polovinkin I. P., Polovinkina M. V., Ermakova Yu. D., Rabeeakh S. A., “Formula srednego znacheniya dlya dvumernogo lineinogo giperbolicheskogo uravneniya”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2016, no. 4, 121–126 | Zbl
[10] Moiseev E. I., “Asimptoticheskaya formula srednego znacheniya dlya regulyarnogo resheniya differentsialnogo uravneniya”, Differ. uravn., 16:5 (1980), 827–844 | MR | Zbl
[11] Moiseev, T. E., “Formula srednego znacheniya dlya garmonicheskoi funktsii v krugovom sektore”, Dokl. RAN., 432:5 (2010), 592–593 | Zbl
[12] Sitnik S. M., “Obobscheniya neravenstv Koshi—Bunyakovskogo metodom srednikh znachenii i ikh prilozheniya”, Fundamentalnaya matematika. Izbrannye trudy uchastnikov Voronezhskogo matematicheskogo seminara po matematicheskomu analizu, teorii funktsii i differentsialnym uravneniyam, Chernozemnyi almanakh nauchnykh issledovanii, eds. Minin L. A., Novikov I. Ya., Rodin V. A., Sitnik S. M., Voronezh, 2005, 3–42
[13] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, Mir, M., 1986
[14] Benzoni-Gavage S., Serre D., Multi-Dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, Oxford Univ. Press, 2006 | MR
[15] Meshkov V. Z., Polovinkin I. P., “Mean-value properties of solutions of linear partial differential equations”, J. Math. Sci., 160:1 (2009), 45–52 | DOI | MR | Zbl
[16] Zalcman L., “Mean values and differential equations”, Isr. J. Math., 14 (1973), 339–352 | DOI | MR | Zbl