Fractional linear Volterra integro-differential equations in Banach spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the foundations of the theory of linear fractional Volterra integro-differential equations of convolution type in Banach spaces. It is established that the existence of a fractional resolvent operator for such equations is equivalent to the well-posedness of the formulation of the initial problem for them. Within the framework of this approach, a theorem of the Hille–Yosida type is proved.
Keywords: Caputo fractional derivative, fractional resolvent, Volterra integro-differential equation, Mittag-Leffler function, Hille–Yosida theorem, fractional resolvent equation.
@article{INTO_2019_173_a4,
     author = {M. I. Ilolov},
     title = {Fractional linear {Volterra} integro-differential equations in {Banach} spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a4/}
}
TY  - JOUR
AU  - M. I. Ilolov
TI  - Fractional linear Volterra integro-differential equations in Banach spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 58
EP  - 64
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a4/
LA  - ru
ID  - INTO_2019_173_a4
ER  - 
%0 Journal Article
%A M. I. Ilolov
%T Fractional linear Volterra integro-differential equations in Banach spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 58-64
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a4/
%G ru
%F INTO_2019_173_a4
M. I. Ilolov. Fractional linear Volterra integro-differential equations in Banach spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 58-64. http://geodesic.mathdoc.fr/item/INTO_2019_173_a4/

[1] Vlasov V. V., Vu Dzh., Kabirova G. R., “Korrektnaya razreshimost i spektralnye svoistva abstraktnykh giperbolicheskikh uravnenii s posledeistviem”, Sovr. mat. Fundam. napravl., 35 (2010), 44–59 | Zbl

[2] Ilolov M., Kuchakshoev Kh. S., “Ob abstraktnykh uravnenii s neogranichennymi nelineinostyami i ikh prilozhenii”, Dokl. RAN., 428:3 (2009), 310–312 | MR | Zbl

[3] Ilolov M., Kuchakshoev Kh. S., Guldzhonov D. N., “O drobnykh lineinykh uravneniyakh v banakhovykh prostranstvakh”, Dokl. AN Resp. Tadzhikistan., 61:2 (2018), 113–119

[4] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[5] Da Prato G., Iannelli M., “Linear integro-differential equations in Banach spaces”, Rend. Sem. Mat. Univ. Padova., 62 (1980), 207–219 | MR | Zbl

[6] Ilolov M., Kuchakshoev Kh., Puchkov V., Yormamadov Sh., “Equation of anomalous diffusion of cosmic rays”, 34th Int. Cosmic Ray Conf. (Hague Netherlands, 30 July — 6 August, 2015), 1–7

[7] Jun-Min Wang, Bao-Zhu Guo, Meng-Yin Fu, “Dynamic behavior of a heat equation with memory”, Math. Meth. Appl. Sci., 32 (2009), 1287–1310 | DOI | MR | Zbl

[8] Grimmer R., “Resolvent operators for integral equations in a Banach space”, Trans. Am. Math. Soc., 273 (1982), 333–349 | DOI | MR | Zbl

[9] Grimmer R., Pruss J., “On linear Volterra equations in Banach spaces”, Comput. Math. Appl., 11:1–3 (1983), 189–205 | MR

[10] Hong-Ming Yin, “The classical solutions for nonlinear integro-differential equations”, J. Integral Eqs. Appl., 1:2 (1988), 249–262 | DOI | MR