Quasi-stability of coexisting attractors of a neurodynamic model with delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 26-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the coexistence of attractors of a neurodynamic model with delay is considered. The model is a system of two specially connected differential-difference equations. An algorithm for estimating Lyapunov exponents for the system is developed.
Keywords: differential-difference equation, buffering, relaxation cycle, Lyapunov exponent, quasi-stability.
@article{INTO_2019_173_a2,
     author = {V. E. Goryunov and M. M. Preobrazhenskaya},
     title = {Quasi-stability of coexisting attractors of a neurodynamic model with delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {26--47},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a2/}
}
TY  - JOUR
AU  - V. E. Goryunov
AU  - M. M. Preobrazhenskaya
TI  - Quasi-stability of coexisting attractors of a neurodynamic model with delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 26
EP  - 47
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a2/
LA  - ru
ID  - INTO_2019_173_a2
ER  - 
%0 Journal Article
%A V. E. Goryunov
%A M. M. Preobrazhenskaya
%T Quasi-stability of coexisting attractors of a neurodynamic model with delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 26-47
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a2/
%G ru
%F INTO_2019_173_a2
V. E. Goryunov; M. M. Preobrazhenskaya. Quasi-stability of coexisting attractors of a neurodynamic model with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 26-47. http://geodesic.mathdoc.fr/item/INTO_2019_173_a2/

[1] Aleshin S. V., “Otsenka invariantnykh chislovykh pokazatelei attraktorov sistem differentsialnykh uravnenii s zapazdyvaniem”, Vychislitelnye tekhnologii v estestvennykh naukakh, Nauch. konf. «Metody superkompyuternogo modelirovaniya» (Tarusa, 1–3 oktyabrya 2014), eds. Nazirov R. R., Schur L. N., In-t kosmich. issled. RAN, M., 2014, 10–17

[2] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966

[3] Glyzin S. D., Kolesov A. Yu., Marushkina E. A., Preobrazhenskaya M. M., “Relaksatsionnye avtokolebaniya v sisteme iz dvukh sinapticheski svyazannykh impulsnykh neironov”, XIX Mezhdunar. nauch.-tekhn. konferentsiya «Neiroinformatika–2017» (Moskva, 2-6 oktyabrya 2017), v. 1, M., 2017, 29–39

[4] Glyzin S. D., Kolesov A. Yu, Rozov N. Kh., “Diskretnye avtovolny v neironnykh sistemakh”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 840–858 | MR | Zbl

[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Differ. uravn., 49:10 (2013), 1227–1244 | MR | Zbl

[6] Glyzin S. D., Kolesov A. Yu, Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh Khopfilda s zapazdyvaniem”, Izv. RAN. Ser. mat., 77:2 (2013), 53–96 | DOI | MR | Zbl

[7] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Modelirovanie effekta vzryva v neironnykh sistemakh”, Mat. zametki., 93:5 (2013), 684–701 | DOI | MR | Zbl

[8] Glyzin S. D., Kolesov A. Yu, Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, Usp. mat. nauk., 70:3 (423) (2015), 3–76 | DOI | MR | Zbl

[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Kvaziustoichivye struktury v koltsevykh gennykh setyakh”, Zh. vychisl. mat. mat. fiz., 58:5 (2018), 682–704 | DOI

[10] Kaschenko S. A., Maiorov V. V., Modeli volnovoi pamyati, Librokom, M., 2009

[11] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Tr. Mat. in-ta im. V. A. Steklova RAN, 216, 1997, 126–153 | Zbl

[12] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. mat. mat. fiz., 50:12 (2010), 2099–2112 | MR | Zbl

[13] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. Mosk. mat. o-va, 19, 1968, 179–210 | Zbl

[14] Preobrazhenskaya M. M., “Relaksatsionnye tsikly v modeli sinapticheski vzaimodeistvuyuschikh ostsillyatorov”, Model. anal. inform. sistem., 24:2 (2017), 186–204 | MR

[15] Preobrazhenskaya M. M., “Impulsno-refrakternyi rezhim v koltsevoi tsepi sinapticheski svyazannykh ostsillyatorov neironnogo tipa”, Model. anal. inform. sistem., 24:5 (2017), 550–566 | MR

[16] Cheney W., Kincaid D., Linear Algebra: Theory and Applications, Jones and Bartlett, Sudbury, Massachusetts, 2012 | Zbl

[17] Hairer E., Wanner G., Norsett S. P., Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer-Verlag, Berlin–Heidelberg, 2008 | MR

[18] Preobrazhenskaya M. M., “Multipliers of an antiphase solution in a system of two coupled nonlinear relaxation oscillators”, J. Phys. Conf. Ser., 1163 (2019), 012062 | DOI

[19] Rabinovich M. I., Varona P., Selverston A. I., Abarbanel H. D. I., “Dynamical principles in neuroscience”, Rev. Mod. Phys., 78 (2006), 1213–1265 | DOI

[20] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern., 68 (1993), 393–407 | DOI

[21] Somers D., Kopell N., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | MR | Zbl

[22] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Phys. D., 16 (1985), 285–317 | DOI | MR | Zbl