On a certain class of quasilinear second-order differential-algebraic equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of second-order, quasilinear, ordinary differential equations with an identically degenerate matrix coefficient of the principal term and with well-posed initial conditions. Fundamental differences between such problems and systems of ordinary differential equations solved with respect to the second derivative are indicated. In terms of matrix polynomials, we formulate conditions of the existence and uniqueness of solutions of such problems in a neighborhood of the starting point.
Keywords: second-order differential-algebraic equation, initial problem
Mots-clés : matrix polynomial.
@article{INTO_2019_173_a1,
     author = {M. V. Bulatov and L. S. Solovarova},
     title = {On a certain class of quasilinear second-order differential-algebraic equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a1/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - L. S. Solovarova
TI  - On a certain class of quasilinear second-order differential-algebraic equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 17
EP  - 25
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a1/
LA  - ru
ID  - INTO_2019_173_a1
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A L. S. Solovarova
%T On a certain class of quasilinear second-order differential-algebraic equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 17-25
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a1/
%G ru
%F INTO_2019_173_a1
M. V. Bulatov; L. S. Solovarova. On a certain class of quasilinear second-order differential-algebraic equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 17-25. http://geodesic.mathdoc.fr/item/INTO_2019_173_a1/

[1] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980, 222 pp.

[2] Bulatov M. V., “O preobrazovanii algebro-differentsialnykh sistem uravnenii”, Zh. vychisl. mat. mat. fiz., 34:3 (1994), 360–372 | MR | Zbl

[3] Bulatov M. V., Ming-Gong Li, “Primenenie matrichnykh polinomov k issledovaniyu lineinykh differentsialno-algebraicheskikh uravnenii vysokogo poryadka”, Differ. uravn., 44:10 (2008), 1299–1306 | MR

[4] Bulatov M. V., Chistyakova E. V., “Ob odnom semeistve vyrozhdennykh integrodifferentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1665–1673 | MR | Zbl

[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1986, 576 pp. | MR

[6] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[7] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996

[8] Bock H. G., Schloder J. P., Schulz V. H., Differential-Algebraic Equations and Their Connections to Optimization, Heidelberg, 1996

[9] Brenan K. F., Campbell S. L., Petzold L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996 | MR | Zbl

[10] Lamour R., März R., Tischendorf C., Differential-Algebraic Equations: A Projector Based Analysis, Springer-Verlag, Berlin–Heidelberg, 2013 | MR | Zbl