Asymptotic solutions of resonant nonlinear singularly perturbed problems in the case of intersection of eigenvalues of the limit operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lomov's regularization method is generalized to resonant, weakly nonlinear, singularly perturbed systems in the case of intersection of roots of the characteristic equation of the limit operator. For constructing asymptotic solutions, the regularization of the original problem by using normal forms developed by the authors is performed. In the absence of resonance, the regularizing normal form is linear, whereas in the presence of resonances, it is nonlinear. In this paper, the resonant case of a weakly nonlinear problem is considered. By using an algorithm of normal forms, we construct an asymptotic solution of any order (with respect to a parameter) and justify this algorithm.
Mots-clés : singular perturbation
Keywords: normal form, regularization, asymptotic convergence.
@article{INTO_2019_173_a0,
     author = {A. A. Bobodzhanov and V. F. Safonov},
     title = {Asymptotic solutions of resonant nonlinear singularly perturbed problems in the case of intersection of eigenvalues of the limit operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a0/}
}
TY  - JOUR
AU  - A. A. Bobodzhanov
AU  - V. F. Safonov
TI  - Asymptotic solutions of resonant nonlinear singularly perturbed problems in the case of intersection of eigenvalues of the limit operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 16
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a0/
LA  - ru
ID  - INTO_2019_173_a0
ER  - 
%0 Journal Article
%A A. A. Bobodzhanov
%A V. F. Safonov
%T Asymptotic solutions of resonant nonlinear singularly perturbed problems in the case of intersection of eigenvalues of the limit operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-16
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a0/
%G ru
%F INTO_2019_173_a0
A. A. Bobodzhanov; V. F. Safonov. Asymptotic solutions of resonant nonlinear singularly perturbed problems in the case of intersection of eigenvalues of the limit operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 3-16. http://geodesic.mathdoc.fr/item/INTO_2019_173_a0/

[1] Abramov V. S., Bobodzhanov A. A., Bobodzhanova M. A., “Normalnye formy i asimptoticheskie resheniya nelineinykh singulyarno vozmuschennykh zadach v sluchae peresecheniya tochek spektra predelnogo operatora”, Aspirant i soiskatel., 2018, no. 4, 42–47

[2] Bobodzhanov A. A., Safonov V. F., “Asimptotika reshenii nelineinykh singulyarno vozmuschennykh sistem v kriticheskom sluchae”, Vestn. MEI., 1997, no. 6, 10–17

[3] Eliseev A. G., “Teoriya singulyarnykh vozmuschenii v sluchae «slaboi» tochki povorota u predelnogo operatora”, Vestn. MEI., 1997, no. 6, 31–41

[4] Eliseev A. G., Lomov S. A., “Teoriya singulyarnykh vozmuschenii v sluchae singulyarnykh osobennostei predelnogo operatora”, Mat. sb., 131 (173):4 (1986), 544–557 | Zbl

[5] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981

[6] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, MGU, M., 2011

[7] Safonov V. F., “Regulyarizovannye asimptoticheskie reshleniya singulyarno vozmuschennykh zadach v kriticheskom sluchae”, Izv. vuzov. Mat., 384:5 (1994), 41–48 | Zbl

[8] Safonov V. F., Bobodzhanov A. A., Kurs vysshei matematiki. Singulyarno vozmuschennye zadachi i metod regulyarizatsii: uchebnoe posobie, MEI, M., 2012

[9] Safonov V. F., Bobodzhanov A. A., Metod normalnykh form dlya nelineinykh rezonansnykh singulyarno vozmuschennykh zadach, Sputnik+, M., 2016