Analysis of the existence of special solutions to the capillarity problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 113-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to the study of the existence of solutions of the capillary equation under the influence of an external potential leading to surface surgery.
Keywords: capillarity problem, Bond number, special solution.
Mots-clés : bifurcation
@article{INTO_2019_172_a8,
     author = {L. V. Stenyukhin},
     title = {Analysis of the existence of special solutions to the capillarity problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {113--118},
     year = {2019},
     volume = {172},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a8/}
}
TY  - JOUR
AU  - L. V. Stenyukhin
TI  - Analysis of the existence of special solutions to the capillarity problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 113
EP  - 118
VL  - 172
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a8/
LA  - ru
ID  - INTO_2019_172_a8
ER  - 
%0 Journal Article
%A L. V. Stenyukhin
%T Analysis of the existence of special solutions to the capillarity problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 113-118
%V 172
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a8/
%G ru
%F INTO_2019_172_a8
L. V. Stenyukhin. Analysis of the existence of special solutions to the capillarity problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 113-118. http://geodesic.mathdoc.fr/item/INTO_2019_172_a8/

[1] Borisovich A. Yu., “Operator Plato i bifurkatsii dvumernykh minimalnykh poverkhnostei”, Globalnyi analiz i matematicheskaya fizika, Voronezh, 1987, 142–155

[2] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR

[3] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovr. mat. Fundam. napravl., 12 (2004), 3–140 | Zbl

[4] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1987

[5] Stenyukhin L. V., “O minimalnykh poverkhnostyakh s ogranicheniyami tipa neravenstv”, Izv. vuzov. Mat., 11 (2012), 51–59 | MR | Zbl

[6] Stenyukhin L. V., “Ob osobykh resheniyakh zadachi kapillyarnosti s krugovoi simmetriei”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2 (2013), 242–245

[7] Stenyukhin L. V., “Bifurkatsionnyi analiz zadachi kapillyarnosti s krugovoi simmetriei”, Vestn. Yuzhno-Ural. gos. un-ta. Ser. Mat. model. program., 7:2 (2014), 77–83 | Zbl

[8] Uraltseva N. N., “Reshenie zadachi kapillyarnosti”, Vestn. LGU, 19 (1973), 54–64 | Zbl

[9] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989

[10] Wente H. C., “The symmetry of sessile and pendent drops”, Pac. J. Math., 88:2 (1980), 387–397 | DOI | MR | Zbl