Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 104-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stationary differential heat and mass transfer equation with discontinuous coefficients describes various non-time-dependent physical processes, for example, the distribution of minority carriers from a stationary source in an inhomogeneous or multilayer structure. In this paper, we analyze the possibilities of applying the matrix method and the finite-difference method for modeling the distribution of minority charge carriers generated by kilovolt electrons in a multilayer semiconductor material. The efficiency of the matrix method for solving stationary differential equations with discontinuous coefficients is shown.
Keywords: mathematical model, differential equation, electron beam, semiconductor, multilayer planar structure, matrix method, finite-difference method.
@article{INTO_2019_172_a7,
     author = {E. V. Seregina and V. V. Kalmanovich and M. A. Stepovich},
     title = {Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--112},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a7/}
}
TY  - JOUR
AU  - E. V. Seregina
AU  - V. V. Kalmanovich
AU  - M. A. Stepovich
TI  - Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 104
EP  - 112
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a7/
LA  - ru
ID  - INTO_2019_172_a7
ER  - 
%0 Journal Article
%A E. V. Seregina
%A V. V. Kalmanovich
%A M. A. Stepovich
%T Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 104-112
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a7/
%G ru
%F INTO_2019_172_a7
E. V. Seregina; V. V. Kalmanovich; M. A. Stepovich. Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 104-112. http://geodesic.mathdoc.fr/item/INTO_2019_172_a7/

[1] Alyukov S. V., “Approksimatsiya stupenchatykh funktsii v zadachakh matematicheskogo modelirovaniya”, Mat. model., 23:3 (2011), 75–88 | MR | Zbl

[2] Amrastanov A. N., Ginzgeimer S. A., Stepovich M. A., Filippov M. N., “Ob odnoi vozmozhnosti matematicheskogo modelirovaniya teplovogo vozdeistviya ostro sfokusirovannogo elektronnogo puchka na odnorodnyi poluprovodnik”, Izv. RAN. Ser. fiz., 80:10 (2016), 1448–1452 | DOI

[3] Amrastanov A. N., Kuzin A. Yu., Mityukhlyaev V. B., Seregina E. V., Stepovich M. A., Todua P. A., Filippov M. N., “Teplovoe vozdeistvie elektronnogo zonda pri rentgenospektralnom nanoanalize”, Izmerit. tekhn., 2017, no. 6, 13–15

[4] Belov A. A., Petrov V. I., Stepovich M. A., “Ispolzovanie modeli nezavisimykh istochnikov dlya rascheta raspredeleniya neosnovnykh nositelei zaryada, generirovannykh v poluprovodnikovom materiale elektronnym puchkom”, Izv. RAN. Ser. fiz., 66:9 (2002), 1317–1322

[5] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011

[6] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomnoi nauki i tekhniki. Ser. Yaderno-reaktornye konstanty., 2018, no. 3, 158–167

[7] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “Matrichnyi metod modelirovaniya raspredeleniya neosnovnykh nositele zaryada, generirovannykh elektronnym puchkom v poluprovodnikovom materiale”, Sovremennye problemy matematicheskogo modelirovaniya, obrabotki izobrazhenii i parallelnykh vychislenii, Tr. mezhdunar. konf., v. 1, Rostov-na-Donu, 2017, 85–93

[8] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O vozmozhnosti prilozheniya apparata Bersa k modelirovaniyu protsessov teplomassoperenosa, obuslovlennogo elektromagnitnym izlucheniem, v planarnoi mnogosloinoi srede”, Tez. dokl., XXIV Mezhdunar. nauch.-tekhn. konf. po fotoelektronike i priboram nochnogo videniya (Moskva, NPO «Orion», 24–27 maya 2016), NPO «Orion», M., 2016, 471–474

[9] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O vozmozhnosti prilozheniya apparata Bersa k modelirovaniyu protsessov teplomassoperenosa, obuslovlennogo elektronami v planarnoi mnogosloinoi srede”, Poverkhnost. Rentgen. sinkhrotron. neitron. issled., 2017, no. 10, 105–110 | DOI

[10] Kalmanovich V. V., “O postroenii reshenii zadach teorii perenosa v mnogosloinoi srede pri nalichii raspredelennykh istochnikov”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, VIII Mezhdunar. konf. (Voronezh, 2015), Voronezh, 2015, 166–169

[11] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem., pod obsch. red. akad. RAN A. L. Stempkovskogo, v. 3, IPPM RAN, M., 2018, 194–201

[12] Makarenkov A. M., Seregina E. V., Stepovich M. A., “Proektsionnyi metod Galerkina resheniya statsionarnogo differentsialnogo uravneniya diffuzii v polubeskonechnoi oblasti”, Zh. vychisl. mat. mat. fiz., 57:5 (2017), 801–813 | DOI | MR | Zbl

[13] Mikheev N. N., Petrov V. I., Stepovich M. A., “Kolichestvennyi analiz materialov poluprovodnikovoi optoelektroniki metodami rastrovoi elektronnoi mikroskopii”, Izv. RAN. Ser. fiz., 55:8 (1991), 1474–1482

[14] Mikheev N. N., Stepovich M. A., “Raspredelenie energeticheskikh poter pri vzaimodeistvii elektronnogo zonda s veschestvom”, Zavod. lab. Diagn. mat., 62:4 (1996), 20–25

[15] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[16] Seregina E. V., Stepovich M. A., Makarenkov A. M., “Analiz trekhmernoi modeli diffuzii neosnovnykh nositelei zaryada, generirovannykh elektronnym zondom v odnorodnom poluprovodnikovom materiale, s ispolzovaniem proektsionnykh metodov”, Poverkhnost. Rentgen. sinkhrotron. neitron. issled., 2018, no. 1, 93–100 | DOI

[17] Seregina E. V., Stepovich M. A., Makarenkov A. M., Filippov M. N., “O vozmozhnosti ispolzovaniya proektsionnogo metoda Galerkina dlya modelirovaniya prostranstvennogo raspredeleniya neosnovnykh nositelei zaryada, generirovannykh elektronnym zondom v poluprovodnike”, Poverkhnost. Rentgen. sinkhrotron. neitron. issled., 2017, no. 9, 91–97 | DOI

[18] Snopova M. G., Burylova I. V., Petrov V. I., Stepovich M. A., “Analiz modeli raspredelenii neosnovnykh nositelei zaryada, generirovannykh v trekhsloinoi poluprovodnikovoi strukture shirokim elektronnym puchkom”, Poverkhnost. Rentgen. sinkhrotron. neitron. issled., 2007, no. 7, 1–6

[19] Stepovich M. A., Snopova M. G., Khokhlov A. G., “Ispolzovanie modeli nezavisimykh istochnikov dlya rascheta raspredeleniya neosnovnykh nositelei zaryada, generirovannykh v dvukhsloinom poluprovodnike elektronnym puchkom”, Prikl. fiz., 2004, no. 3, 61–65

[20] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl

[21] Burylova I. V., Petrov V. I., Snopova M. G., Stepovich M. A., “Mathematical simulation of distribution of minority charge carriers, generated in multy–layer semiconducting structure by a wide electron beam”, \Russian Fiz. tekhn. poluprovod., 41:4 (2007), 458–461

[22] Stepovich M. A., Amrastanov A. N., Seregina E. V., Filippov M. N., “On one peculiarity of the model describing the interaction of the electron beam with the semiconductor surface”, J. Phys. Conf. Ser., 955 (2018), 012040 | DOI

[23] Stepovich M. A., Khokhlov A. G., Snopova M. G., “Model of independent sources used for calculation of distribution of minority charge carriers generated in two-layer semiconductor by electron beam”, Proc. SPIE., 5398 (2004), 159–165 | DOI