On small motions of hydraulic systems containing a viscoelastic fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 48-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of two problems describing small motions of partially dissipative hydraulic systems. The first problem concerns small motions of a hydraulic system consisting of a viscoelastic fluid and a barotropic gas located above the fluid; the second concerns small motions of the hydraulic system “viscoelastic fluid—ideal fluid—ideal fluid” filling a static vessel. Using the operator approach developed in previous works of the authors, both problems are reduced to the Cauchy problem for a differential-operator equation in a Hilbert space and a theorem on the solvability of the problem on an arbitrary finite time interval is proved.
Keywords: hydrodynamic system, ideal fluid, viscoelastic fluid, orthoprojector, Cauchy problem.
Mots-clés : barotropic gas
@article{INTO_2019_172_a4,
     author = {N. D. Kopachevskii and E. V. Syomkina},
     title = {On small motions of hydraulic systems containing a viscoelastic fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {48--90},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/}
}
TY  - JOUR
AU  - N. D. Kopachevskii
AU  - E. V. Syomkina
TI  - On small motions of hydraulic systems containing a viscoelastic fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 48
EP  - 90
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/
LA  - ru
ID  - INTO_2019_172_a4
ER  - 
%0 Journal Article
%A N. D. Kopachevskii
%A E. V. Syomkina
%T On small motions of hydraulic systems containing a viscoelastic fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 48-90
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/
%G ru
%F INTO_2019_172_a4
N. D. Kopachevskii; E. V. Syomkina. On small motions of hydraulic systems containing a viscoelastic fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 48-90. http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/

[1] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Usp. mat. nauk., 57:5 (347) (2002), 3–78 | DOI | MR

[2] Azizov T. Ya., Kopachevskii N. D., Orlova L. D., “Evolyutsionnaya i spektralnaya zadachi, porozhdennye problemoi malykh dvizhenii vyazkouprugoi zhidkosti”, Tr. SPb. mat. o-va., 6 (1998), 5–33

[3] Askerov N. K., Krein S. G., Laptev G. I., “Zadacha o kolebaniyakh vyazkoi zhidkosti svyazannye s nei operatornye uravneniya”, Funkts. anal. prilozh., 2:2 (1968), 21–32 | MR

[4] Vronskii B. M., “Normalnye kolebaniya chastichno dissipativnoi gidrosistemy”, Dinam. sist., 2 (30):1–2 (2012), 53–56

[5] Vronskii B. M., “O malykh dvizheniyakh sistemy «zhidkost-gaz» v ogranichennoi oblasti”, Ukr. mat. zh., 58:10 (2006), 1326–1334 | MR

[6] Gokhberg N. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[7] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, Usp. mat. nauk., 26:4 (100) (1971), 15–41 | MR | Zbl

[8] Kopachevskii N. D., Abstraktnaya formula Grina i nekotorye ee prilozheniya, Forma, Simferopol, 2016

[9] Kopachevskii N. D., “O malykh dvizheniyakh sistemy iz dvukh vyazkouprugikh zhidkostei, zapolnyayuschikh nepodvizhnyi sosud”, Dinam. sist., 7 (35):1–2 (2017), 109–145

[10] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989

[11] Kopachevskii N. D., Semkina E. V., “O malykh dvizheniyakh gidrosistemy «vyazkouprugaya zhidkost–idealnaya zhidkost», zapolnyayuschei nepodvizhnyi sosud”, Dinam. sist., 7 (35):3 (2017), 207–228

[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp.

[13] Krein S. G., “O kolebaniyakh vyazkoi zhidkosti v sosude”, Dokl. AN SSSR., 159:2 (1964), 262–265

[14] Krein S. G., Laptev G. I., “K zadache o dvizhenii vyazkoi zhidkosti v otkrytom sosude”, Funkts. anal. prilozh., 2:1 (1968), 40–50 | MR | Zbl

[15] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR

[16] Miloslavskii A. I., Spektralnyi analiz malykh kolebanii vyazkouprugoi zhidkosti v otkrytom konteinere, Dep. rukopis No 1221, In-t mat. NAN Ukrainy, Kiev, 1989

[17] Miloslavskii A. I., “Spektr malykh kolebanii vyazkouprugoi zhidkosti v otkrytom sosude”, Usp. mat. nauk., 44:4 (1989)

[18] Miloslavskii A. I., “Spektr malykh kolebanii vyazkouprugoi nasledstvennoi sredy”, Dokl. AN SSSR., 309:3 (1989), 532–536 | MR

[19] Agranovich M., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl

[20] Eirich F., Rheology. Theory and Applications, Academic Press, New York, 1956 | MR | Zbl

[21] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Sem. Mat. Univ. Padova., 27 (1957), 284–305 | MR | Zbl

[22] Kopachevsky N., Krein S., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-Adjoint Problems for an Ideal Fluid, Birkhäuser, Basel–Boston–Berlin, 2001 | MR | Zbl

[23] Kopachevsky N., Krein S., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Non-Self-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR

[24] Kopachevsky N., Padula M., Vronsky B. M., “Small motions and eigenoscillations of a system “fluid-gas” in a bounded region”, Uchen. Zap. Tavrich. Nats. Univ. im. V. I. Vernadskogo. Ser. Mat. Mekh. Inf. Kib., 20:1 (2007), 3–55 | MR

[25] Miloslavskii A., “Stability of a viscoelastic isotropic medium”, Sov. Phys. Dokl., 33 (1985) | MR

[26] Miloslavsky A., “Stability of certain classes of evolution equations”, Sib. Math. J., 26:5 (1985), 723–735 | DOI | MR

[27] Rychkov V., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., 60:1 (1999), 237–257 | DOI | MR | Zbl