On small motions of hydraulic systems containing a viscoelastic fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 48-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to the study of two problems describing small motions of partially dissipative hydraulic systems. The first problem concerns small motions of a hydraulic system consisting of a viscoelastic fluid and a barotropic gas located above the fluid; the second concerns small motions of the hydraulic system “viscoelastic fluid—ideal fluid—ideal fluid” filling a static vessel. Using the operator approach developed in previous works of the authors, both problems are reduced to the Cauchy problem for a differential-operator equation in a Hilbert space and a theorem on the solvability of the problem on an arbitrary finite time interval is proved.
Keywords: hydrodynamic system, ideal fluid, viscoelastic fluid, orthoprojector, Cauchy problem.
Mots-clés : barotropic gas
@article{INTO_2019_172_a4,
     author = {N. D. Kopachevskii and E. V. Syomkina},
     title = {On small motions of hydraulic systems containing a viscoelastic fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {48--90},
     year = {2019},
     volume = {172},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/}
}
TY  - JOUR
AU  - N. D. Kopachevskii
AU  - E. V. Syomkina
TI  - On small motions of hydraulic systems containing a viscoelastic fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 48
EP  - 90
VL  - 172
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/
LA  - ru
ID  - INTO_2019_172_a4
ER  - 
%0 Journal Article
%A N. D. Kopachevskii
%A E. V. Syomkina
%T On small motions of hydraulic systems containing a viscoelastic fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 48-90
%V 172
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/
%G ru
%F INTO_2019_172_a4
N. D. Kopachevskii; E. V. Syomkina. On small motions of hydraulic systems containing a viscoelastic fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 48-90. http://geodesic.mathdoc.fr/item/INTO_2019_172_a4/

[1] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Usp. mat. nauk., 57:5 (347) (2002), 3–78 | DOI | MR

[2] Azizov T. Ya., Kopachevskii N. D., Orlova L. D., “Evolyutsionnaya i spektralnaya zadachi, porozhdennye problemoi malykh dvizhenii vyazkouprugoi zhidkosti”, Tr. SPb. mat. o-va., 6 (1998), 5–33

[3] Askerov N. K., Krein S. G., Laptev G. I., “Zadacha o kolebaniyakh vyazkoi zhidkosti svyazannye s nei operatornye uravneniya”, Funkts. anal. prilozh., 2:2 (1968), 21–32 | MR

[4] Vronskii B. M., “Normalnye kolebaniya chastichno dissipativnoi gidrosistemy”, Dinam. sist., 2 (30):1–2 (2012), 53–56

[5] Vronskii B. M., “O malykh dvizheniyakh sistemy «zhidkost-gaz» v ogranichennoi oblasti”, Ukr. mat. zh., 58:10 (2006), 1326–1334 | MR

[6] Gokhberg N. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[7] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, Usp. mat. nauk., 26:4 (100) (1971), 15–41 | MR | Zbl

[8] Kopachevskii N. D., Abstraktnaya formula Grina i nekotorye ee prilozheniya, Forma, Simferopol, 2016

[9] Kopachevskii N. D., “O malykh dvizheniyakh sistemy iz dvukh vyazkouprugikh zhidkostei, zapolnyayuschikh nepodvizhnyi sosud”, Dinam. sist., 7 (35):1–2 (2017), 109–145

[10] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989

[11] Kopachevskii N. D., Semkina E. V., “O malykh dvizheniyakh gidrosistemy «vyazkouprugaya zhidkost–idealnaya zhidkost», zapolnyayuschei nepodvizhnyi sosud”, Dinam. sist., 7 (35):3 (2017), 207–228

[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp.

[13] Krein S. G., “O kolebaniyakh vyazkoi zhidkosti v sosude”, Dokl. AN SSSR., 159:2 (1964), 262–265

[14] Krein S. G., Laptev G. I., “K zadache o dvizhenii vyazkoi zhidkosti v otkrytom sosude”, Funkts. anal. prilozh., 2:1 (1968), 40–50 | MR | Zbl

[15] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR

[16] Miloslavskii A. I., Spektralnyi analiz malykh kolebanii vyazkouprugoi zhidkosti v otkrytom konteinere, Dep. rukopis No 1221, In-t mat. NAN Ukrainy, Kiev, 1989

[17] Miloslavskii A. I., “Spektr malykh kolebanii vyazkouprugoi zhidkosti v otkrytom sosude”, Usp. mat. nauk., 44:4 (1989)

[18] Miloslavskii A. I., “Spektr malykh kolebanii vyazkouprugoi nasledstvennoi sredy”, Dokl. AN SSSR., 309:3 (1989), 532–536 | MR

[19] Agranovich M., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl

[20] Eirich F., Rheology. Theory and Applications, Academic Press, New York, 1956 | MR | Zbl

[21] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Sem. Mat. Univ. Padova., 27 (1957), 284–305 | MR | Zbl

[22] Kopachevsky N., Krein S., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-Adjoint Problems for an Ideal Fluid, Birkhäuser, Basel–Boston–Berlin, 2001 | MR | Zbl

[23] Kopachevsky N., Krein S., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Non-Self-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR

[24] Kopachevsky N., Padula M., Vronsky B. M., “Small motions and eigenoscillations of a system “fluid-gas” in a bounded region”, Uchen. Zap. Tavrich. Nats. Univ. im. V. I. Vernadskogo. Ser. Mat. Mekh. Inf. Kib., 20:1 (2007), 3–55 | MR

[25] Miloslavskii A., “Stability of a viscoelastic isotropic medium”, Sov. Phys. Dokl., 33 (1985) | MR

[26] Miloslavsky A., “Stability of certain classes of evolution equations”, Sib. Math. J., 26:5 (1985), 723–735 | DOI | MR

[27] Rychkov V., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., 60:1 (1999), 237–257 | DOI | MR | Zbl