Methods for solving the problem of zonal electrophoresis with periodic initial data
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of zonal electrophoresis of a two-component mixture with spatially periodic initial distribution of the mixture components. Two methods of solution are proposed: analytical (hodograph method) and numerical (method of finite volumes). A comparative analysis of the results obtained is performed.
Keywords: model of zone electrophoresis, hodograph method, method of finite volumes, spatially periodic initial data.
@article{INTO_2019_172_a3,
     author = {T. F. Dolgikh},
     title = {Methods for solving the problem of zonal electrophoresis with periodic initial data},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a3/}
}
TY  - JOUR
AU  - T. F. Dolgikh
TI  - Methods for solving the problem of zonal electrophoresis with periodic initial data
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 38
EP  - 47
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a3/
LA  - ru
ID  - INTO_2019_172_a3
ER  - 
%0 Journal Article
%A T. F. Dolgikh
%T Methods for solving the problem of zonal electrophoresis with periodic initial data
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 38-47
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a3/
%G ru
%F INTO_2019_172_a3
T. F. Dolgikh. Methods for solving the problem of zonal electrophoresis with periodic initial data. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 38-47. http://geodesic.mathdoc.fr/item/INTO_2019_172_a3/

[1] Dolgikh T. F., “Metod konechnykh ob'emov dlya resheniya zadachi zonalnogo elektroforeza”, Sovremennye problemy mekhaniki sploshnoi sredy, XIX Mezhdunar. konf. (Rostov-na-Donu, 15–18 oktyabrya 2018), 2018, 94–98

[2] Dolgikh T. F., “Reshenie zadachi o perenose massy pod deistviem elektricheskogo polya v dvukhkomponentnoi smesi”, Izv. Sev-Kavkaz. nauch. tsentra vyssh. shkoly. Estestv. nauki., 2017, no. 3-1 (195-1), 28–35

[3] Dolgikh T. F., Zhukov M. Yu., Shiryaeva E. V., “Reshenie ellipticheskikh uravnenii s periodicheskimi dannymi dlya zadachi zonalnogo elektroforeza”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2017, no. 2, 85–96 | Zbl

[4] Zhdanov S. K., Trubnikov B. A., Kvazigazovye neustoichivye sredy, Nauka, M., 1971

[5] Zhukov M. Yu., Massoperenos elektricheskim polem, RGU, Rostov-na-Donu, 2005

[6] Zhukov M. Yu., Shiryaeva E. V., Matematicheskoe modelirovanie protsessa sedimentatsii primesi v potoke zhidkosti, YuFU, Rostov-na-Donu, 2016

[7] Zhukov M. Yu., Shiryaeva E. V., Dolgikh T. F., Metod godografa dlya resheniya giperbolicheskikh i ellipticheskikh kvazilineinykh uravnenii, YuFU, Rostov-na-Donu, 2015

[8] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[9] Copson E. T., “On the Riemann–Green Function”, Arch. Rat. Mech. Anal., 1 (1958), 324–348 | DOI | MR | Zbl

[10] Harten A., “High resolution schemes for hyporbolic conservation laws”, J. Comput. Phys., 135 (1997), 260–278 | DOI | MR | Zbl

[11] Senashov S. I., Yakhno A., “Conservation laws, hodograph transformation and boundary value problems of plane plasticity”, SIGMA, 8 (2012), 071 | MR | Zbl