Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_172_a2, author = {Yu. A. Gladyshev and V. V. Kalmanovich}, title = {On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {30--37}, publisher = {mathdoc}, volume = {172}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/} }
TY - JOUR AU - Yu. A. Gladyshev AU - V. V. Kalmanovich TI - On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 30 EP - 37 VL - 172 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/ LA - ru ID - INTO_2019_172_a2 ER -
%0 Journal Article %A Yu. A. Gladyshev %A V. V. Kalmanovich %T On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 30-37 %V 172 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/ %G ru %F INTO_2019_172_a2
Yu. A. Gladyshev; V. V. Kalmanovich. On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 30-37. http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/
[1] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011, 204 pp.
[2] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomnoi nauki i tekhniki. Ser. Yaderno-reaktornye konstanty., 2018, no. 3, 158–167
[3] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O vozmozhnosti prilozheniya apparata Bersa k modelirovaniyu protsessov teplomassoperenosa, obuslovlennogo elektronami v planarnoi mnogosloinoi srede”, Poverkhnost. Rentgen. sinkhrotron. neitron. issled., 2017, no. 10, 105–110 | DOI
[4] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, IPPM RAN, M., 2018, 194–201
[5] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964
[6] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vysshaya shkola, M., 2001
[7] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005
[8] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967
[9] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl