On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 30-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the applicability of the matrix method for solving the heat equation for multilayer media in the case where a phase transition is possible in some layer. We consider only stationary processes in the absence of internal heat sources. We propose a general method for layer systems with translation, axial, or central symmetry by using the technique of generalized Bers degrees. By the method indicated above, we perform calculations for one substance, when after a phase transition, the system becomes a two-layer system. We consider the dependence of the coordinate of the phase-transition point on the external temperature and compare results obtained for media with types of symmetry indicated above. A temperature field is constructed for multilayer media with various types of symmetry when a phase transition has occurred in a certain layer.
Keywords: mathematical model, matrix method, heat equation, multilayer medium, phase transition.
@article{INTO_2019_172_a2,
     author = {Yu. A. Gladyshev and V. V. Kalmanovich},
     title = {On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {30--37},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
AU  - V. V. Kalmanovich
TI  - On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 30
EP  - 37
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/
LA  - ru
ID  - INTO_2019_172_a2
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%A V. V. Kalmanovich
%T On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 30-37
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/
%G ru
%F INTO_2019_172_a2
Yu. A. Gladyshev; V. V. Kalmanovich. On the matrix method for solving heat conduction problems in a multilayer medium in the presence of phase transitions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 30-37. http://geodesic.mathdoc.fr/item/INTO_2019_172_a2/

[1] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011, 204 pp.

[2] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomnoi nauki i tekhniki. Ser. Yaderno-reaktornye konstanty., 2018, no. 3, 158–167

[3] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O vozmozhnosti prilozheniya apparata Bersa k modelirovaniyu protsessov teplomassoperenosa, obuslovlennogo elektronami v planarnoi mnogosloinoi srede”, Poverkhnost. Rentgen. sinkhrotron. neitron. issled., 2017, no. 10, 105–110 | DOI

[4] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, IPPM RAN, M., 2018, 194–201

[5] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964

[6] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vysshaya shkola, M., 2001

[7] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005

[8] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967

[9] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl