Multiparameter eigenvalue problems and their applications in electrodynamics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 9-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear $n$-parametric eigenvalue problem called the problem $P$ is considered. In addition to $n$ spectral parameters, the problem $P$ depends on $n^2$ numerical parameters; for zero values of them, it splits into $n$ linear problems $P_i^0$, $i=\overline{1,n}$. To the problem $P$, one can assign $n$ other nonlinear problems $P_i$, which, in particular, have solutions that are not related to the solutions of the problems $P_i^0$. The problems $P_i$ are treated in this work as “nonperturbed” problems. Using the properties of eigenvalues of the problems $P_i$, we prove the existence of eigenvalues of the problem $P$; some of these eigenvalues are not related to solutions of the problems $P_i^0$.
Keywords: nonlinear Sturm–Liouville-type problem, multiparameter eigenvalue problem, method of integral dispersion equations.
Mots-clés : perturbation method
@article{INTO_2019_172_a1,
     author = {D. V. Valovik and V. Yu. Kurseeva},
     title = {Multiparameter eigenvalue problems and their applications in electrodynamics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {9--29},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a1/}
}
TY  - JOUR
AU  - D. V. Valovik
AU  - V. Yu. Kurseeva
TI  - Multiparameter eigenvalue problems and their applications in electrodynamics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 9
EP  - 29
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a1/
LA  - ru
ID  - INTO_2019_172_a1
ER  - 
%0 Journal Article
%A D. V. Valovik
%A V. Yu. Kurseeva
%T Multiparameter eigenvalue problems and their applications in electrodynamics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 9-29
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a1/
%G ru
%F INTO_2019_172_a1
D. V. Valovik; V. Yu. Kurseeva. Multiparameter eigenvalue problems and their applications in electrodynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 9-29. http://geodesic.mathdoc.fr/item/INTO_2019_172_a1/

[1] Adams M., Vvedenie v teoriyu opticheskikh volnovodov, Mir, M., 1984 | MR

[2] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956

[3] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[4] Vainshtein L. A., Elektromagnitnye volny, Radio i svyaz, M., 1988

[5] Valovik D. V., “O nelineinoi zadache na sobstvennye znacheniya, svyazannoi s teoriei rasprostraneniya elektromagnitnykh voln”, Differ. uravn., 54:2 (2018), 168–179 | DOI | MR | Zbl

[6] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956

[8] Landau L. D., Livshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982

[9] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956

[10] Osmolovskii V. G., Nelineinaya zadacha Shturma—Liuvillya, Izd-vo SPbGU, SPb., 2003

[11] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, GIFML, M., 1961

[12] Trikomi F., Differentsialnye uravneniya, IL, M., 1962

[13] Shen I. R., Printsipy nelineinoi optiki, Nauka, M., 1989

[14] Akhmediev N. N., Ankevich A., Solitons, Nonlinear Pulses and Beams, Chapman and Hall, London, 1997

[15] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:4 (1973), 349–381 | DOI | MR | Zbl

[16] Boardman A. D., Egan P., Lederer F., Langbein U., Mihalache D., Third-Order Nonlinear Electromagnetic TE and TM Guided Waves, Elsevier, Amsterdam–London–New York–Tokyo, 1991

[17] Boardman A. D., Twardowski T., “Theory of nonlinear interaction between te and tm waves”, J. Opt. Soc. Am. B., 5:2 (1988), 523–528 | DOI

[18] Boardman A. D., Twardowski T., “Transverse-electric and transverse-magnetic waves in nonlinear isotropic waveguides”, Phys. Rev. A., 39:5 (1989), 2481–2492 | DOI

[19] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical nonlinear waveguides”, Sov. Phys. JETP., 35:1 (1972), 44–47

[20] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Structure of three-component vector fields in self-focusing waveguides”, Sov. Phys. JETP., 36:2 (1973), 282–285 | MR

[21] Pontryagin L. S., Ordinary Differential Equations, Pergamon Press, 1962 | MR | Zbl

[22] Schürmann H. W., Smirnov Yu. G., Shestopalov Yu. V., “Propagation of te-waves in cylindrical nonlinear dielectric waveguides”, Phys. Rev. E., 71:1 (2005), 016614 | DOI

[23] Skryabin D. V., Biancalana F., Bird D. M., Benabid F., “Effective kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a raman active gas”, Phys. Rev. Lett., 93:14 (2004), 143907 | DOI

[24] Smirnov Yu. G., Valovik D. V., “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity”, Phys. Rev. A., 91:1 (2015), 013840 | DOI | MR

[25] Smirnov Yu. G., Valovik D. V., “Problem of nonlinear coupled electromagnetic te-te wave propagation”, J. Math. Phys., 54:8 (2013), 083502 | DOI | MR | Zbl

[26] Valovik D. V., “Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem”, Nonlin. Anal. Real World Appl., 20:12 (2014), 52–58 | DOI | MR | Zbl

[27] Valovik D. V., “Nonlinear multi-frequency electromagnetic wave propagation phenomena”, J. Optics., 19:11 (2017), 115502 | DOI

[28] Valovik D. V., “Novel propagation regimes for te waves guided by a waveguide filled with Kerr medium”, J. Nonlin. Opt. Phys. Mater., 25:4 (2016), 1650051 | DOI

[29] Valovik D. V., “On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear helmholtz equation with polynomial nonlinearity”, Appl. Math. Model., 53 (2018), 296–309 | DOI | MR | Zbl

[30] Valovik D. V., “On the problem of nonlinear coupled electromagnetic te-tm wave propagation”, J. Math. Phys., 54:4 (2013), 042902 | DOI | MR | Zbl

[31] Xie P., Zhang Z. Q., “Multifrequency gap solitons in nonlinear photonic crystals”, Phys. Rev. Lett., 91:21 (2003), 213904 | DOI