Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_170_a1, author = {Yu. P. Virchenko and A. V. Subbotin}, title = {Description of a class of evolutionary equations in ferrodynamics}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {15--30}, publisher = {mathdoc}, volume = {170}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/} }
TY - JOUR AU - Yu. P. Virchenko AU - A. V. Subbotin TI - Description of a class of evolutionary equations in ferrodynamics JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 15 EP - 30 VL - 170 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/ LA - ru ID - INTO_2019_170_a1 ER -
%0 Journal Article %A Yu. P. Virchenko %A A. V. Subbotin %T Description of a class of evolutionary equations in ferrodynamics %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 15-30 %V 170 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/ %G ru %F INTO_2019_170_a1
Yu. P. Virchenko; A. V. Subbotin. Description of a class of evolutionary equations in ferrodynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 15-30. http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/
[2] Andreev A. F., Marchenko V. I., “Makroskopicheskaya teoriya spinovykh voln”, ZhETF., 70:4 (1976), 1522–1532
[3] Baryakhtar V. G., Zhizn v nauke, Naukova dumka, Kiev, 2010
[4] Baryakhtar V. G., Belykh V. G., Soboleva T. K., “Makroskopicheskaya teoriya relaksatsii kollektivnykh vozbuzhdenii v neuporyadochennykh i nekollinearnykh magnetikakh”, Teor. mat. fiz., 77:2 (1988), 311–318 | MR
[5] Virchenko Yu. P., Ponamareva A. E., “Postroenie obschego evolyutsionnogo uravneniya dlya psevdovektornogo solenoidalnogo polya s lokalnym zakonom sokhraneniya”, Nauch. ved. Belgorod. gos. un-ta. Ser. Mat. Fiz., 50:2 (2018), 224–232
[6] Volkov D. V., “Fenomenologicheskie lagranzhiany”, Fiz. elem. chast. atom. yad., 4:1 (1973), 3–41 | MR
[7] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989
[8] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. elem. chast. atom. yad., 27:2 (1996), 431–492
[9] Kats E. I., Lebedev V. V., Dinamika zhidkikh kristallov, Nauka, M., 1988
[10] Kosevich A. M., Ivanov B. A., Kovalev A. S., Nelineinye volny namagnichennosti, Naukova dumka, Kiev, 1988
[11] Landau L. D., Lifshits E. M., “K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel”, Landau L. D. Sobranie trudov, v. 1, Nauka, M., 1969, 128 | MR
[12] Lyubarskii G. Ya., Teoriya grupp i ee prilozheniya v fizike, GIFML, M., 1958
[13] Mak-Konnel A. Dzh., Vvedenie v tenzornyi analiz s prilozheniyami k geometrii, mekhanike i fizike, GIFML, M., 1963
[14] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR
[15] Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Nauch. ved. Belgorod. gos. un-ta. Ser. Mat. Fiz., 50:4 (2018), 492–497
[16] Briceyda B. D., Porter R. M., “General Solution of the Inhomogeneous Div-Curl System and Consequences”, Adv. Appl. Clifford Alg., 2017, 3015–-3037 | MR | Zbl