Description of a class of evolutionary equations in ferrodynamics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 15-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we state the problem of constructing evolution equations describing the dynamics of condensed matter with an internal structure. Within the framework of this statement, we describe the class of evolution equations for vector and pseudovector fields on $\mathbb{R}^3$ with an infinitesimal shift defined by a second-order, divergent-type differential operator, which is invariant under translations of $\mathbb{R}^3$ and time translations and is transformed covariantly under rotations of $\mathbb{R}^3$. The case of equations of this class with preserved solenoidality and unimodality of the field is studied separately. A general formula for all operators corresponding to these equations is established.
Keywords: divergent differential operator, pseudovector field, flux density, unimodality, solenoidality, ferrodynamic equation.
@article{INTO_2019_170_a1,
     author = {Yu. P. Virchenko and A. V. Subbotin},
     title = {Description of a class of evolutionary equations in ferrodynamics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {15--30},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. V. Subbotin
TI  - Description of a class of evolutionary equations in ferrodynamics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 15
EP  - 30
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/
LA  - ru
ID  - INTO_2019_170_a1
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T Description of a class of evolutionary equations in ferrodynamics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 15-30
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/
%G ru
%F INTO_2019_170_a1
Yu. P. Virchenko; A. V. Subbotin. Description of a class of evolutionary equations in ferrodynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 15-30. http://geodesic.mathdoc.fr/item/INTO_2019_170_a1/

[2] Andreev A. F., Marchenko V. I., “Makroskopicheskaya teoriya spinovykh voln”, ZhETF., 70:4 (1976), 1522–1532

[3] Baryakhtar V. G., Zhizn v nauke, Naukova dumka, Kiev, 2010

[4] Baryakhtar V. G., Belykh V. G., Soboleva T. K., “Makroskopicheskaya teoriya relaksatsii kollektivnykh vozbuzhdenii v neuporyadochennykh i nekollinearnykh magnetikakh”, Teor. mat. fiz., 77:2 (1988), 311–318 | MR

[5] Virchenko Yu. P., Ponamareva A. E., “Postroenie obschego evolyutsionnogo uravneniya dlya psevdovektornogo solenoidalnogo polya s lokalnym zakonom sokhraneniya”, Nauch. ved. Belgorod. gos. un-ta. Ser. Mat. Fiz., 50:2 (2018), 224–232

[6] Volkov D. V., “Fenomenologicheskie lagranzhiany”, Fiz. elem. chast. atom. yad., 4:1 (1973), 3–41 | MR

[7] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[8] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. elem. chast. atom. yad., 27:2 (1996), 431–492

[9] Kats E. I., Lebedev V. V., Dinamika zhidkikh kristallov, Nauka, M., 1988

[10] Kosevich A. M., Ivanov B. A., Kovalev A. S., Nelineinye volny namagnichennosti, Naukova dumka, Kiev, 1988

[11] Landau L. D., Lifshits E. M., “K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel”, Landau L. D. Sobranie trudov, v. 1, Nauka, M., 1969, 128 | MR

[12] Lyubarskii G. Ya., Teoriya grupp i ee prilozheniya v fizike, GIFML, M., 1958

[13] Mak-Konnel A. Dzh., Vvedenie v tenzornyi analiz s prilozheniyami k geometrii, mekhanike i fizike, GIFML, M., 1963

[14] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[15] Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Nauch. ved. Belgorod. gos. un-ta. Ser. Mat. Fiz., 50:4 (2018), 492–497

[16] Briceyda B. D., Porter R. M., “General Solution of the Inhomogeneous Div-Curl System and Consequences”, Adv. Appl. Clifford Alg., 2017, 3015–-3037 | MR | Zbl