Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_170_a0, author = {S. N. Askhabov}, title = {Nonlinear integral equations with potential-type kernels in the nonperiodic case}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--14}, publisher = {mathdoc}, volume = {170}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/} }
TY - JOUR AU - S. N. Askhabov TI - Nonlinear integral equations with potential-type kernels in the nonperiodic case JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 14 VL - 170 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/ LA - ru ID - INTO_2019_170_a0 ER -
%0 Journal Article %A S. N. Askhabov %T Nonlinear integral equations with potential-type kernels in the nonperiodic case %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-14 %V 170 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/ %G ru %F INTO_2019_170_a0
S. N. Askhabov. Nonlinear integral equations with potential-type kernels in the nonperiodic case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/
[2009] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR
[2010] Askhabov S. N., “Uravneniya tipa svertki s monotonnoi nelineinostyu na otrezke”, Differ. uravn., 51:9 (2015), 1182–1188 | DOI | Zbl
[2011] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki., 97:5 (2015), 643–654 | DOI | MR | Zbl
[2012] Askhabov S. N., “Usloviya polozhitelnosti operatorov s raznostnymi yadrami v refleksivnykh prostranstvakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 149 (2018), 3–13
[2013] Askhabov S. N., Dzhabrailov A. L., “Priblizhennoe reshenie nelineinykh uravnenii tipa svertki na otrezke”, Ufim. mat. zh., 5:2 (2013), 3–11 | MR
[2014] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972
[2015] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[2016] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR
[2017] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[2018] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959
[2019] Edvards R., Ryady Fure v sovremennom izlozhenii, Mir, M., 1985
[2020] Brezis H., Browder F. E., “Some new results about Hammerstein equations”, Bull. Am. Math. Soc., 80 (1974), 567–572 | DOI | MR | Zbl
[2021] Brezis H., Browder F. E., “Nonlinear integral equations and systems of Hammerstein type”, Adv. Math., 18 (1975), 115–147 | DOI | MR | Zbl
[2022] Brunner H., Volterra integral equations: an itroduction to theory and applications, Cambridge Univ. Press, Cambridge, 2017 | MR
[2023] Gripenberg G., Londen S. O., Staffans O., Volterra integral and functional equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl