Nonlinear integral equations with potential-type kernels in the nonperiodic case
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find conditions under which a generalized potential-type operator acts continuously from a Lebesgue space with a general weight to its dual space and possesses the positivity property. Using these conditions, the global existence and uniqueness theorems for various classes of nonlinear integral equations of convolution type in real weighted Lebesgue spaces are proved by the method of monotonic (in the Browder–Minty sense) operators. Also we obtain estimates of the norms of solutions which imply that the corresponding homogeneous equations have only a trivial solution.
Keywords: positive operator, generalized potential-type operator, monotonic operator, nonlinear integral equation.
@article{INTO_2019_170_a0,
     author = {S. N. Askhabov},
     title = {Nonlinear integral equations with potential-type kernels in the nonperiodic case},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear integral equations with potential-type kernels in the nonperiodic case
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 14
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/
LA  - ru
ID  - INTO_2019_170_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear integral equations with potential-type kernels in the nonperiodic case
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-14
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/
%G ru
%F INTO_2019_170_a0
S. N. Askhabov. Nonlinear integral equations with potential-type kernels in the nonperiodic case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2019_170_a0/

[2009] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[2010] Askhabov S. N., “Uravneniya tipa svertki s monotonnoi nelineinostyu na otrezke”, Differ. uravn., 51:9 (2015), 1182–1188 | DOI | Zbl

[2011] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki., 97:5 (2015), 643–654 | DOI | MR | Zbl

[2012] Askhabov S. N., “Usloviya polozhitelnosti operatorov s raznostnymi yadrami v refleksivnykh prostranstvakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 149 (2018), 3–13

[2013] Askhabov S. N., Dzhabrailov A. L., “Priblizhennoe reshenie nelineinykh uravnenii tipa svertki na otrezke”, Ufim. mat. zh., 5:2 (2013), 3–11 | MR

[2014] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972

[2015] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[2016] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR

[2017] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2018] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959

[2019] Edvards R., Ryady Fure v sovremennom izlozhenii, Mir, M., 1985

[2020] Brezis H., Browder F. E., “Some new results about Hammerstein equations”, Bull. Am. Math. Soc., 80 (1974), 567–572 | DOI | MR | Zbl

[2021] Brezis H., Browder F. E., “Nonlinear integral equations and systems of Hammerstein type”, Adv. Math., 18 (1975), 115–147 | DOI | MR | Zbl

[2022] Brunner H., Volterra integral equations: an itroduction to theory and applications, Cambridge Univ. Press, Cambridge, 2017 | MR

[2023] Gripenberg G., Londen S. O., Staffans O., Volterra integral and functional equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl