On the Lichnerovicz Laplacian
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 67-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the geometry of the kernel of the Lichnerovicz Laplacian in the case of complete and, in particular, compact Riemannian manifolds, and also propose a lower estimate of its eigenvalues on a compact Riemannian manifold with the curvature operator bounded from below and an upper estimate of its eigenvalues on a compact Riemannian manifold with the Ricci curvature bounded from below. We define the Lichnerovicz Laplacian on the space of smooth sections of the bundle of covariant tensors as is required by its original definition; this distinguishes our results from results obtained earlier.
Keywords: Riemannian manifold, covariant tensor, kernel of the Laplacian, eigenvalue of the Laplacian.
Mots-clés : Lichnerovicz Laplacian
@article{INTO_2019_169_a8,
     author = {S. E. Stepanov and I. I. Tsyganok},
     title = {On the {Lichnerovicz} {Laplacian}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {67--74},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
TI  - On the Lichnerovicz Laplacian
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 67
EP  - 74
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a8/
LA  - ru
ID  - INTO_2019_169_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. I. Tsyganok
%T On the Lichnerovicz Laplacian
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 67-74
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a8/
%G ru
%F INTO_2019_169_a8
S. E. Stepanov; I. I. Tsyganok. On the Lichnerovicz Laplacian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 67-74. http://geodesic.mathdoc.fr/item/INTO_2019_169_a8/

[1] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990

[2] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[3] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957

[4] Alexandrova I. A., Stepanov S. E., Tsyganok I. I., “Exterior differential forms on symmetric spaces”, Sci. Evolutions., 2:2 (2017), 49–53 | DOI | MR

[5] Bohm C., Wilking B., “Manifolds with positive curvature operator are space forms”, Ann. Math., 167 (2008), 1079–1097 | DOI | MR | Zbl

[6] Boucetta M., “Spectra and symmetric eigentensors of the Lichnerowicz Laplacian on $P^{n}(\mathbb{C})$”, J. Geom. Phys., 60:10 (2010), 1352–1369 | DOI | MR | Zbl

[7] Boucetta B., “Spectre du Laplacien de Lichnerowicz sur les projectifs complexes”, C. R. Acad. Sci. Paris. Sér. I. Math., 333:6 (2001), 571–576 | DOI | MR | Zbl

[8] Buser P., “Beispiele für $\lambda_{1}$ auf kompakten Mannigfaltigkeiten”, Math. Z., 165 (1979), 107–133 | DOI | MR | Zbl

[9] Calabi E., “An extension of E. Hopf's maximum principle with an application to Riemannian geometry”, Duke Math. J., 25 (1957), 45–56 | DOI | MR

[10] Cheng S., “Eigenvalue comparison theorems and its geometric applications”, Math. Z., 143 (1975), 289–297 | DOI | MR | Zbl

[11] Chow B., Lu P., Ni L., Hamilton's Ricci Flow, Science Press, 2006 | MR

[12] Dieterich P. S., On the Lichnerowicz Laplacian operator and its application to stability of space-times, Diplomarbeit., Univ. Stuttgart, 2013

[13] Dodziuk J., “Vanishing theorem for square-integrable harmonic forms”, Proc. Indian Acad. Sci. (Math. Sci.), 99:1 (1981), 21–27 | DOI | MR

[14] Dotti G., Gleiser R. J., “Linear stability of Einstein–Gauss–Bonnet static spacetimes”, Phys. Rev. D., 72:4 (2005), 044018 | DOI | MR

[15] Duchesne B., “Infinite-dimensional Riemannian symmetric spaces with fixed-sing curvature operator”, Ann. Inst. Fourier., 65:1 (2015), 211–244 | DOI | MR | Zbl

[16] Gallot S., Meyer D., “Sur la première valeur propre du $p$-spectre pour les variétés à opérateur de courbure positif”, C. R. Acad. Sci. Paris. Sér. A-B., 276 (1973), A1619–A1621 | MR

[17] Gibbons G. W., Hartnoll S. A., “A gravitational instability in higher dimensions”, Phys. Rev. D., 66 (2002), 064024 | DOI | MR

[18] Greene R. E., Wu H., “Integrals of subharmonic functions on manifolds of nonnegative curvatures”, Invent. Math., 27 (1974), 265–298 | DOI | MR | Zbl

[19] Hassannezhad A., Kokarev G., Politerovich I., “Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound”, J. Spectr. Theory., 6:4 (2016), 807–835 | DOI | MR | Zbl

[20] Kröncke K., Stability of Einstein manifolds, Ph.D. thesis, Univ. Potsdam, 2013

[21] Kröncke K., “Stability of Einstein manifolds”, Ann. Glob. Anal. Geom., 47:1 (2015), 81–98 | DOI | MR | Zbl

[22] Lichnerowicz A., “Propagateurs et commutateurs en relativité générate”, Publ. Math. IHES., 10:1 (1961), 5–56 | DOI | MR

[23] Pigola S., Rigoli M., Setti A. G., Vanishing and firiteness Results in geometric analysis. A generalization of the Bochner technique, Birkhäuser-Verlag, Berlin, 2008 | MR

[24] Petersen P., Riemannian Geometry, Springer-Verlag, 2016 | MR | Zbl

[25] Stepanov S. E., Tsyganok I. I., “Conformal Killing $L^{2}$-forms on complete Riemannian manifolds with nonpositive curvature operator”, J. Math. Anal. Appl., 458:1 (2018), 1–8 | DOI | MR | Zbl

[26] Wang C., Linear stability of Einstein metrics and Perelman's lambda-functional for manifolds with conical singularities, Ph.D. thesis, Univ. of California, 2016 | MR