Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_169_a7, author = {V. A. Popov}, title = {Lie algebra of killing vector fields and its stationary subalgebra}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {56--66}, publisher = {mathdoc}, volume = {169}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/} }
TY - JOUR AU - V. A. Popov TI - Lie algebra of killing vector fields and its stationary subalgebra JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 56 EP - 66 VL - 169 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/ LA - ru ID - INTO_2019_169_a7 ER -
%0 Journal Article %A V. A. Popov %T Lie algebra of killing vector fields and its stationary subalgebra %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 56-66 %V 169 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/ %G ru %F INTO_2019_169_a7
V. A. Popov. Lie algebra of killing vector fields and its stationary subalgebra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 56-66. http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/
[1] Kobayasi Sh., Nomidzu K., Osnovaniya differentsialnoi geometrii, v. 1, Nauka, M., 1981 | MR
[2] Popov V. A., “Analiticheskoe prodolzhenie lokalno zadannykh rimanovykh mnogoobrazii”, Mat. zametki., 36:4 (1984), 559–570 | MR | Zbl
[3] Popov V. A., “Prodolzhaemost lokalnykh grupp izometrii”, Mat. sb., 135 (177):1 (1988), 45–64
[4] Popov V. A., “Analiticheskoe prodolzhenie lokalno zadannykh izometrii psevdorimanova mnogoobraziya”, Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyami i matematicheskomu modelirovaniyu, Itogi nauki. Yug Rossii, 9, Yuzh. mat. in-t, 2015, 193–200
[5] Popov V. A., “Infinitezemalnye affinnye preobrazovaniya i ikh analiticheskoe prodolzhenie”, Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyami i matematicheskomu modelirovaniyu, Itogi nauki. Yug Rossii, 10, Yuzh. mat. in-t, 2016, 195–201
[6] Popov V. A., “Algebra Li vektornykh polei Killinga i ee statsionarnaya podalgebra”, Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyami i matematicheskomu modelirovaniyu, Itogi nauki. Yug Rossii, 11, Yuzh. mat. in-t, 2017
[7] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964
[8] Mostow G. D., “Extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math., 52 (1950), 606–636 | DOI | MR | Zbl
[9] Malcev A. I., “On the theory of Lie groups in the large”, Mat. sb., 16 (38):2 (1945), 163–190 | MR | Zbl
[10] Popov V. A., “On a periodic boundary-value problem for the first-order scalar functional differential equation”, Differ. Equations., 39:3 (2003), 310–327 | MR
[11] Popov V. A., “On Closeness of stationary subgroup of affine transformation groups”, Lobachevskii J. Math., 38:4 (2017), 724–729 | DOI | MR | Zbl