Lie algebra of killing vector fields and its stationary subalgebra
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{g}$ be the Lie algebra of all Killing vector fields on a locally homogeneous, analytic Riemannian manifold $M$, $\mathfrak{h}$ be a stationary subalgebra of $\mathfrak{g}$, $G$ be the simply connected group generated by the algebra $\mathfrak{g}$, $H$ be the subgroup of $G$ generated by the subalgebra $\mathfrak{h}$, $\mathfrak{z}$ be the center of the algebra $\mathfrak{g}$, $\mathfrak{r}$ be its radical, and $[\mathfrak{g};\mathfrak{g}]$ be its commutator subgroup. If $\dim\big(\mathfrak{h}\cap\big(\mathfrak{z} + [\mathfrak{g}, \mathfrak{g}] \big)\big) = \dim \big(\mathfrak{h} \cap [\mathfrak{g}, \mathfrak{g}]\big)$, then $H$ is closed in $G$. If for any semisimple subalgebra $\mathfrak{p}\subset\mathfrak{g}$ satisfying the condition $\mathfrak{p}+\mathfrak{r}=\mathfrak{g}$, the relation $(\mathfrak{p}+\mathfrak{z})\cap\mathfrak{h} =\mathfrak{p}\cap\mathfrak{h}$ holds, then $H$ is closed in $G$. We also examine the analytic continuation of the given local, analytic Riemannian manifold.
Keywords: Riemannian manifold, Lie algebra, analytic continuation, vector field, closed subgroup.
Mots-clés : Lie group
@article{INTO_2019_169_a7,
     author = {V. A. Popov},
     title = {Lie algebra of killing vector fields and its stationary subalgebra},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--66},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/}
}
TY  - JOUR
AU  - V. A. Popov
TI  - Lie algebra of killing vector fields and its stationary subalgebra
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 56
EP  - 66
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/
LA  - ru
ID  - INTO_2019_169_a7
ER  - 
%0 Journal Article
%A V. A. Popov
%T Lie algebra of killing vector fields and its stationary subalgebra
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 56-66
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/
%G ru
%F INTO_2019_169_a7
V. A. Popov. Lie algebra of killing vector fields and its stationary subalgebra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 56-66. http://geodesic.mathdoc.fr/item/INTO_2019_169_a7/

[1] Kobayasi Sh., Nomidzu K., Osnovaniya differentsialnoi geometrii, v. 1, Nauka, M., 1981 | MR

[2] Popov V. A., “Analiticheskoe prodolzhenie lokalno zadannykh rimanovykh mnogoobrazii”, Mat. zametki., 36:4 (1984), 559–570 | MR | Zbl

[3] Popov V. A., “Prodolzhaemost lokalnykh grupp izometrii”, Mat. sb., 135 (177):1 (1988), 45–64

[4] Popov V. A., “Analiticheskoe prodolzhenie lokalno zadannykh izometrii psevdorimanova mnogoobraziya”, Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyami i matematicheskomu modelirovaniyu, Itogi nauki. Yug Rossii, 9, Yuzh. mat. in-t, 2015, 193–200

[5] Popov V. A., “Infinitezemalnye affinnye preobrazovaniya i ikh analiticheskoe prodolzhenie”, Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyami i matematicheskomu modelirovaniyu, Itogi nauki. Yug Rossii, 10, Yuzh. mat. in-t, 2016, 195–201

[6] Popov V. A., “Algebra Li vektornykh polei Killinga i ee statsionarnaya podalgebra”, Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyami i matematicheskomu modelirovaniyu, Itogi nauki. Yug Rossii, 11, Yuzh. mat. in-t, 2017

[7] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[8] Mostow G. D., “Extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math., 52 (1950), 606–636 | DOI | MR | Zbl

[9] Malcev A. I., “On the theory of Lie groups in the large”, Mat. sb., 16 (38):2 (1945), 163–190 | MR | Zbl

[10] Popov V. A., “On a periodic boundary-value problem for the first-order scalar functional differential equation”, Differ. Equations., 39:3 (2003), 310–327 | MR

[11] Popov V. A., “On Closeness of stationary subgroup of affine transformation groups”, Lobachevskii J. Math., 38:4 (2017), 724–729 | DOI | MR | Zbl