Integrability properties of the four-dimensional equation of the universal hierarchy
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 48-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties associated with the integrability of the four-dimensional equation of the universal hierarchy are considered. In particular, the structure of the algebra of its local symmetries is studied. We show that the second group of exotic cohomologies of this algebra is nontrivial. We prove that the spectral parameter in the well-known covering of this equation is irremovable. A shadow of nonlocal symmetry was found; using it, we construct the recursion operator. The action of the recursion operator on some local symmetries generates new non-Abelian coverings of the equation.
Keywords: integrable differential equation, differential covering, symmetry, recursion operator.
@article{INTO_2019_169_a6,
     author = {O. I. Morozov},
     title = {Integrability properties of the four-dimensional equation of the universal hierarchy},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {48--55},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a6/}
}
TY  - JOUR
AU  - O. I. Morozov
TI  - Integrability properties of the four-dimensional equation of the universal hierarchy
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 48
EP  - 55
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a6/
LA  - ru
ID  - INTO_2019_169_a6
ER  - 
%0 Journal Article
%A O. I. Morozov
%T Integrability properties of the four-dimensional equation of the universal hierarchy
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 48-55
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a6/
%G ru
%F INTO_2019_169_a6
O. I. Morozov. Integrability properties of the four-dimensional equation of the universal hierarchy. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 48-55. http://geodesic.mathdoc.fr/item/INTO_2019_169_a6/

[1] Baran Kh., Krasilschik I. S., Morozov O. I., Voichak P., “Nelokalnye simmetrii integriruemykh lineino vyrozhdennykh uravnenii: sravnitelnoe issledovanie”, Teor. mat. fiz., 196:2 (2018), 169–192 | Zbl

[2] Vinogradov A. M., Krasilschik I. S., Simmetrii i zakony sokhraneniya differentsialnykh uravnenii matematicheskoi fiziki, Faktorial, M., 2005

[3] Martinez Alonso L., Shabat A. B., “Gidrodinamicheskie reduktsii i resheniya universalnoi ierarkhii”, Teor. mat. fiz., 140:2 (2004), 216–229 | DOI | Zbl

[4] Baran H., Marvan M., Jets: A software for differential calculus on jet spaces and diffieties, http://jets.math.slu.cz

[5] Bogdanov L. V., Pavlov M. V., “Linearly degenerate hierarchies of quasiclassical SDYM type”, J. Math. Phys., 58:9 (2017), 093505 | DOI | MR | Zbl

[6] Cieśliński J., “Group interpretation of the spectral parameter in the case of nonhomogeneous, nonlinear Schrödinger system”, J. Math. Phys., 34:6 (1993), 2372–2384 | DOI | MR | Zbl

[7] Igonin S., Krasil'shchik J., On one-parametric families of Bäcklund transformations, 2000, arXiv: nlin/0010040v1 [nlin.SI] | MR

[8] Krasil'shchik J., On one-parametric families of Bäcklund transformations, Preprint DIPS-1/2000

[9] Kruglikov B. S., Morozov O. I., “Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations”, Lett. Math. Phys., 105 (2015), 1703–1723 | DOI | MR | Zbl

[10] Krasil'shchik I. S., Sergyeyev A., Morozov O. I., “Infinitely many nonlocal conservation laws for the ABC equation with $A+B+C \neq 0$”, Calc. Var. Part. Diff. Eqs., 55:5 (2016), 123 | DOI | MR | Zbl

[11] Krasil'shchik J., Verbovetsky A., “Geometry of jet spaces and integrable systems”, J. Geom. Phys., 61 (2011), 1633–1674 | DOI | MR | Zbl

[12] Krasil'shchik J., Verbovetsky A., Vitolo R., “A unified approach to computation of integrable structures”, Acta Appl. Math., 120 (2012), 199–218 | DOI | MR | Zbl

[13] Krasil'shchik J., Verbovetsky A., Vitolo R., The Symbolic Computation of Integrability Structures for Partial Differential Equations, Springer-Verlag, 2017 | MR | Zbl

[14] Krasil'shchik I. S., Vinogradov A. M., “Nonlocal symmetries and the theory of coverings”, Acta Appl. Math., 2 (1984), 79–86 | DOI | MR

[15] Krasil'shchik I. S., Vinogradov A. M., “Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations”, Acta Appl. Math., 15 (1989), 161–209 | DOI | MR | Zbl

[16] Lelito A., Morozov O. I., “Three-component nonlocal conservation laws for Lax-integrable 3D partial differential equations”, J. Geom. Phys., 131 (2018), 89–100 | DOI | MR | Zbl

[17] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries of the complex Monge–Ampère equation yield hyper-Kähler metrics without continuous symmetries”, J. Phys. A., 36 (2003), 10023 | DOI | MR | Zbl

[18] Martínez Alonso L., Shabat A. B., “Energy-dependent potentials revisited: A universal hierarchy of hydrodynamic type”, Phys. Lett. A., 299 (2002), 359–365 | DOI | MR | Zbl

[19] Marvan M., “Another look on recursion operators”, Differential Geometry and Applications, Proc. Conf, Masaryk University, Brno, 1995, 393–402 | MR

[20] Marvan M., “On the horizontal gauge cohomology and nonremovability of the spectral parameter”, Acta Appl. Math., 72 (2002), 51–65 | DOI | MR | Zbl

[21] Marvan M., Sergyeyev A., “Recursion operators for dispersionless integrable systems in any dimension”, Inv. Probl., 28 (2012), 025011 | DOI | MR | Zbl

[22] Morozov O. I., “Deformed cohomologies of symmetry pseudo-groups and coverings of differential equations”, J. Geom. Phys., 113 (2017), 215–225 | DOI | MR | Zbl

[23] Morozov O. I., “Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations”, J. Geom. Phys., 128 (2018), 20–31 | DOI | MR | Zbl

[24] Morozov O. I., Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations. II, 2018, arXiv: 1805.00319 [nlin.SI] | MR | Zbl

[25] Morozov O. I., Sergyeyev A., “The four-dimensional Martínez Alonso–Shabat equation: reductions and nonlocal symmetries”, J. Geom. Phys., 85 (2014), 40–45 | DOI | MR | Zbl

[26] Pavlov M. V., Stoilov N., “Three dimensional reductions of four-dimensional quasilinear systems”, J. Math. Phys., 58:11 (2017), 111510 | DOI | MR | Zbl

[27] Sergyeyev A., “A simple construction of recursion operators for multidimensional dispersionless integrable systems”, J. Math. Anal. Appl., 454 (2017), 468–480 | DOI | MR | Zbl