Metric characteristics of hyperbolic polygons and polyhedra
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider some properties of hyperbolic polyhedra, both common with Euclidean and specific. Asymptotic behavior of metric characteristics of polyhedra in the $n$-dimensional hyperbolic space is examined in the cases where parameters of the polyhedra change and the dimension of the space unboundedly increases; in particular, the radius of the inscribed sphere of a polyhedron is estimated and its asymptotic behavior is obtained. In connection with this, the problem of estimating the minimal number of faces of the described polyhedron in the $n$-dimensional hyperbolic space depending on the radius of the inscribed sphere is posed. We also consider some properties of hyperbolic polygons, both belonging to absolute geometry and only hyperbolic.
Keywords: Lobachevsky space, hyperbolic trigonometry, polyhedron, sphere
Mots-clés : polygon, simplex.
@article{INTO_2019_169_a4,
     author = {E. A. Kostina and N. N. Kostina},
     title = {Metric characteristics of hyperbolic polygons and polyhedra},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a4/}
}
TY  - JOUR
AU  - E. A. Kostina
AU  - N. N. Kostina
TI  - Metric characteristics of hyperbolic polygons and polyhedra
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 31
EP  - 38
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a4/
LA  - ru
ID  - INTO_2019_169_a4
ER  - 
%0 Journal Article
%A E. A. Kostina
%A N. N. Kostina
%T Metric characteristics of hyperbolic polygons and polyhedra
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 31-38
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a4/
%G ru
%F INTO_2019_169_a4
E. A. Kostina; N. N. Kostina. Metric characteristics of hyperbolic polygons and polyhedra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 31-38. http://geodesic.mathdoc.fr/item/INTO_2019_169_a4/

[1] Bibikov P. I., “Opisannye tsiklicheskie linii treugolnika v geometrii Lobachevskogo”, Mat. prosv. Ser. 3., 13 (2009), 142–148

[2] Kostin A. V., Kostina N. N., “Interpretatsii teoremy Kezi i ee giperbolicheskogo analoga”, Sib. elektr. mat. izv., 13 (2016), 242–251 | MR | Zbl

[3] Kostina E. A., Kostina N. N., “Asimptoticheskie otsenki metricheskikh kharakteristik mnogogrannikov v $n$-mernom giperbolicheskom prostranstve”, Dni geometrii v Novosibirske–2018. Tez. Mezhdunar. konf, In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2018, 54

[4] Kostina N. N., Kostina E. A., “Obschie svoistva mnogougolnikov v prostranstvakh postoyannoi krivizny”, Dni geometrii v Novosibirske–2014. Tez. Mezhdunar. konf., posv. 85-letiyu akademika Yu. G. Reshetnyaka, In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2014, 42

[5] Mednykh A. D., Pashkevich M. G., “Elementarnye formuly dlya giperbolicheskogo tetraedra”, Sib. mat. zh., 47:4 (2006), 831–841 | MR | Zbl

[6] Nestorovich N. M., Geometricheskie postroeniya v ploskosti Lobachevskogo, GITTL, M.-L., 1951 | MR

[7] Petrov F. V., “Vpisannye chetyrekhugolniki i trapetsii v absolyutnoi geometrii”, Mat. prosv. Ser. 3., 13 (2009), 149–154

[8] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966 | MR

[9] Shirokov P. A., “Etyudy po geometrii Lobachevskogo”, Izv. fiz.-mat. o-va KGU. Ser. 2., 24:1 (1924), 26–32

[10] Abrosimov N. V., Mikaiylova L. A., “Casey's theorem in hyperbolic geometry”, Sib. elektr. mat. izv., 12 (2015), 354–360 | MR | Zbl

[11] Casey J., A Sequel to the First Six Books of the Elements of Euclid Containing an Easy Introduction to Modern Geometry, with Numerous Examples, Hodges, Figgis and Co., Dublin, 1888

[12] DeBlois J., “The geometry of cyclic hyperbolic polygons”, Rocky Mountain J. Math., 46:3 (2016), 801–862 | DOI | MR | Zbl

[13] Kostin A. V., Sabitov I. Kh., “Smarandache theorem in hyperbolic geometry”, J. Math. Phys. Anal. Geom., 10:2 (2014), 221–232 | Zbl

[14] Kubota T., “On the extended Ptolemy's theorem in hyperbolic geometry”, Sci. Repts. Tohoku Univ. Ser. 1. Phys. Chem. Astr., 2 (1912), 131–156

[15] Mednykh A. D., “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Sib. elektr. mat. izv., 9 (2012), 247–255 | MR | Zbl

[16] Parks H. R., Wills D. C., “An elementary calculation of the dihedral angle of the regular $n$-simplex”, Amer. Math. Monthly., 109 (8) (2002), 756–758 | DOI | MR | Zbl

[17] Wimmer L., “Cyclic polygons in non-Euclidean geometry”, Element. Math., 66 (2011), 74–82 | DOI | MR | Zbl